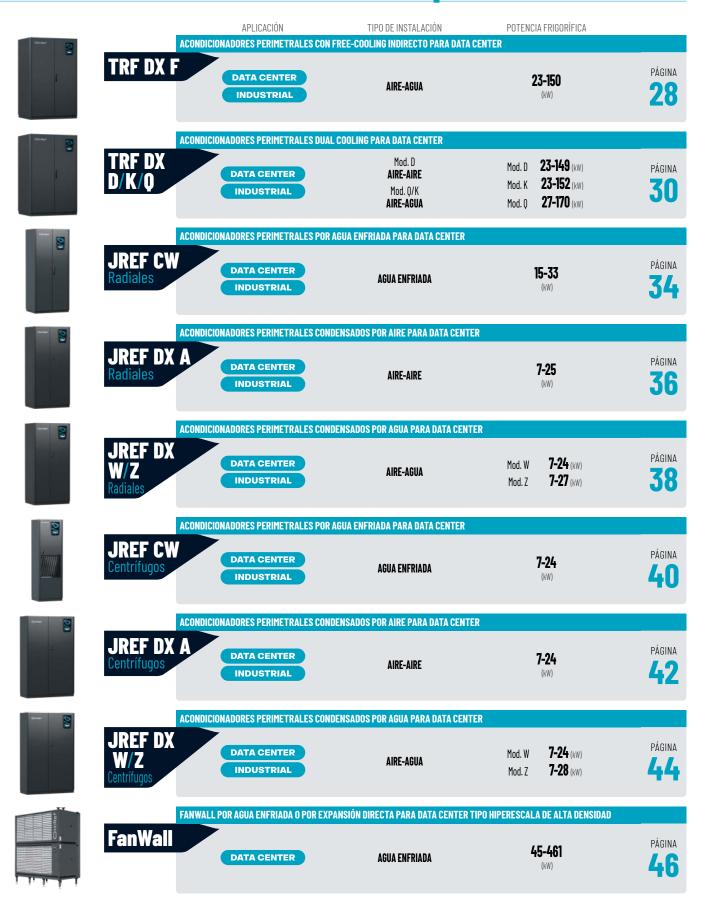


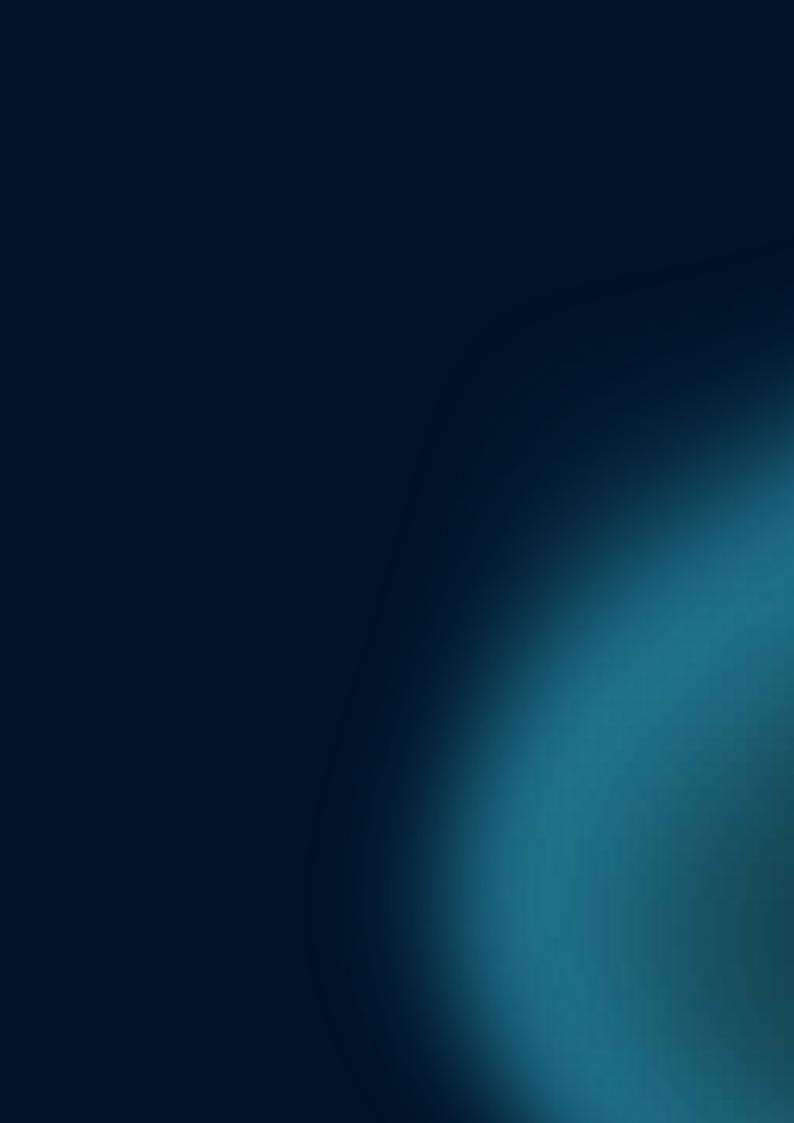
CATÁLOGO CCAC IEC HDC



Acondicionadores perimetrales

Acondicionadores perimetrales

Acondicionadores perimetrales



Acondicionadores evaporativos aire-aire

Acondicionadores Alta Densidad

CHiRef

ACONDICIONADORES PERIMETRALES

Plataforma TRF Evolution

Inspirada en lo mejor del TREF Diseño revolucionario

Eficiencia, flexibilidad, footprint reducido y optimización de la disposición interna.

TRF Evolution es la nueva familia de **armarios perimetrales** HiRef diseñados para el acondicionamiento de los Data Centers. Reúne en una sola familia revolucionaria las múltiples gamas ya ofrecidas, desde las unidades por agua enfriada hasta las unidades por expansión directa. Las unidades de la TRF Evolution tienen todas las características para ofrecer la solución más eficiente para la refrigeración de los Data Centers, garantizando fiabilidad, **control preciso** de las condiciones termohigrométricas y **flexibilidad** para adaptarse a las diferentes condiciones de trabajo requeridas. La medida de fondo se ha aumentado a 890 mm y a 960 mm,

y se ha incorporado un intercambiador térmico de aletas que es un 30% más grande en las versiones NRG y TRF DX y un 16% en las versiones TRF CW, con respecto a las unidades de las generaciones anteriores. Las capacidades específicas (kW/m²) y la eficiencia han aumentado gracias a un ventilador de última generación que incrementa el rendimiento en un 15%. Además, cada unidad HiRef puede personalizarse durante la fase de codiseño con el cliente o el diseñador, en función del contexto específico de uso, lo que hace que las soluciones sean modulares y más eficientes para cada caso.

Agua Enfriada

Las unidades por agua enfriada están disponibles en numerosas configuraciones y versiones:

- amplio rango de potencia frigorífica: desde 40 kW con los TRF CW, hasta 350 kW con los TRF CF;
- flujo de aire: diferentes configuraciones del flujo de aire en los modelos TRF CW y módulo de ventiladores en las unidades TRF CS y TRF CF;

 circuito hidrónico: se han realizado las configuraciones A B C para poder elegir la mejor opción en función de las condiciones de funcionamiento del Data Center:

Geometría "A"

Diseñada para trabajar con altos caudales de agua y $\Delta T = 5^{\circ}C$. Ideal para las soluciones existentes

Geometría "B"

Diseñada para trabajar con moderados caudales de agua y $\Delta T = 8^{\circ} C$. Ideal para Data Centers de última generación

Geometría "C"

Diseñada para trabajar con bajos caudales de agua y ΔT = 12°C. Ideal para Data Centers de nueva generación

Regulación

Todas las unidades TRF incorporan válvulas para la regulación del caudal de agua. Además de las válvulas modulantes de 2 o 3 vías, a pedido se pueden instalar válvulas de regulación independientes de la presión. Ofrecen múltiples ventajas, tales como la reducción de los costes de puesta en servicio y una mayor precisión y estabilidad en la regulación de la capacidad frigorífica.

Eficiencia

Expansión directa

La familia de productos TRF Evolution también incluye las gamas por **expansión directa** TRF DX y NRG: la primera monta compresores on-off en toda la serie, la segunda **compresores modulantes accionados por inverter**. El uso de la tecnología por inverter permite que las unidades de la gama NRG sean una de las soluciones de acondicionamiento de **menor consumo energético y alta precisión**.

En función de las necesidades del sistema, durante la fase de presupuesto es posible optar entre una unidad con condensación por aire o por agua. Con el funcionamiento **Dual Cooling** es posible obtener una **redundancia completa** gracias a la batería por agua enfriada adicional. Por último, con la versión **Free-Cooling indirecto por agua** es posible **minimizar el consumo energético** aprovechando las bajas temperaturas ambientales para acondicionar sin que el compresor se ponga en marcha.

NRG

ACONDICIONADORES PERIMETRALES PARA DATA CENTER CON COMPRESORES MODULANTES

TRF DX

ACONDICIONADORES PERIMETRALES
PARA DATA CENTER
CON COMPRESORES ON-OFF

TRF CW

ACONDICIONADORES PERIMETRALES POR AGUA ENFRIADA PARA DATA CENTER

TRF CS

ACONDICIONADORES
PERIMETRALES PARA
DATA CENTER POR AGUA
ENFRIADA CON VENTILADORES
BAJO EL SUELO SLIM EDITION

TRF CF

ACONDICIONADORES
PERIMETRALES PARA
DATA CENTER POR AGUA
ENFRIADA CON VENTILADORES
BAJO EL SUELO

Los nuevos acondicionadores por agua enfriada de la serie TRF CW son aptos especialmente para entornos tecnológicos en los que se requiere un control constante de la temperatura y del caudal de aire. Los componentes de la unidad TRF CW ofrecen la solución más eficiente para la refrigeración de los Data Centers, garantizando fiabilidad, control preciso de las condiciones termohigrométricas y flexibilidad para adaptarse a las distintas condiciones de trabajo requeridas.

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

Regulación de la ventilación

En función de la lógica de distribución del aire en la sala de servidores, es posible elegir el sistema de ventilación más adecuado montado en la máquina, garantizando **un caudal de aire constante** (airflow control) **o una sobrepresión disponible constante** (Δp control); esta última está indicada especialmente en el caso de utilizar un suelo sobreelevado.

Doble circuito

Las unidades por agua enfriada también están disponibles con doble circuito. En esta versión, la alimentación se realiza a través de dos circuitos hidráulicos diferentes que ofrecen la máxima continuidad de funcionamiento en caso de fallo de uno de ellos. Cada circuito está equipado con una válvula de regulación.

- Control de la temperatura mediante sistemas de calefacción y poscalefacción mediante resistencias eléctricas, batería adicional de agua caliente o ambos (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Modulación de la velocidad de los ventiladores de acuerdo con la carga térmica (ΔT constante)
- Conexiones hidráulicas desde el fondo de la unidad
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Paneles sándwich solo en las puertas delanteras o en toda la máquina (opcional)
- Función de lectura instantánea del caudal de agua, de las temperaturas de entrada y salida del agua, o de la capacidad frigorífica suministrada (opcionales)

Batería de aletas con tratamiento hidrofílico Todos los modelos de la gama

TRF CW incorporan de série baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida y la salida de los condensados en el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior

y exterior de la unidad.

Numerosos tipos de válvulas para una regulación siempre precisa

Todas las unidades de la gama TRF CW están equipadas de serie con válvulas de regulación equipadas con servomotor de 0-10V, que se pueden seleccionar en la versión de 2 vías con sistema de caudal variable, o de 3 vías, o con servomotor con retorno por muelle. A pedido también se pueden montar válvulas independientes de la presión. Todos estos tipos de válvulas garantizan la máxima precisión de regulación manteniendo el equilibrio hidrónico del sistema.

Nuevo diseño: eficiencia, flexibilidad y optimización de la disposición interna

Los espacios internos han sido rediseñados completamente para una mejor distribución de los componentes. La nueva disposición interna cuenta con un intercambiador de aletas más grande y un ventilador de última generación para obtener el máximo caudal de aire y eficiencia. Después de un meticuloso estudio fluidodinámico, también se ha ampliado la superficie filtrante, ahora distribuida en toda la batería para reducir aún más las pérdidas de carga de aire.

Ventilación EC 2.0

Los ventiladores PLUG EC, de serie en toda la gama, se pueden regular mediante diferentes lógicas: caudal, sobrepresión ΔP y ΔT constantes. Su regulación precisa permite un uso eficiente de la energía eléctrica que se consume en la ventilación y la consiguiente reducción del PUE del sistema. La regulación de la velocidad con rango ampliado se realiza mediante el protocolo Modbus. Por último, la función de «velocidad de emergencia» permite que el ventilador funcione incluso en caso de fallo de funcionamiento del microprocesador.

Flexibilidad garantizada

Tres tipos diferentes de intercambiadores de calor, cada uno optimizado para un valor ∆T del agua específico (diferencia de temperatura del agua entre entrada/salida), **garantizan una gran flexibilidad de adaptación al sistema,** incluso en el caso de enfriadoras de líquido ya en funcionamiento, sin comprometer el rendimiento frigorífico:

- **Geometría A** para $\Delta T = 5^{\circ}C$
- **Geometría B** para △T = 8°C
- Geometría C para ΔT = 12°C

TRF CW		040	060	070	080	090	100	110	130	170	240			
Geometría A				A	Aire interior 2	4°C - 50% / /	Agua refriger	ada 7°C - 12°	C					
Potencia frigorifica SHR EER	kW	38.1 0.86 31.07	58 0.79 39.97	64.4 0.82 33.28	80.8 0.78 37.31	85.3 0.81 34.93	105.5 0.77 40.41	103.1 0.83 33.65	137.2 0.77 40.43	177.2 0.77 36.02	257.1 0.74 34.82			
Geometría A				A	ire interior 3	0°C - 35% / A	gua refriger	ada 10°C - 15'	°C					
Potencia frigorífica SHR EER	kW	43.3 1 35.36	59.6 0.99 41.06	67.9 1 35.05	80.8 0.99 37.33	89.9 1 36.82	104 0.97 39.84	112.3 1 36.66	133.7 0.99 39.41	172.7 0.99 35.11	236.3 0.94 32.01			
Geometría B				A	ire interior 3	0°C - 35% / A	gua refriger	ada 10°C - 18'	°C					
Potencia frigorífica SHR EER	kW	38.9 1 31.69	55.2 1 38	63.3 1 32.69	74.8 1 34.54	82.4 1 33.73	98.4 1 37.69	104.8 1 34.19	126.3 1 37.2	163.1 1 33.15	229.5 0.96 31.08			
Geometría C		Aire interior 30°C - 35% / Agua refrigerada 10°C - 22°C												
Potencia frigorífica SHR EER	kW	33.4 1 27.23	49.8 1 34.32	54.4 1 28.1	67.5 1 31.2	73.2 1 30	87.6 1 33.55	90.1 1 29.39	111.8 1 32.94	144.4 1 29.35	210.2 1 28.47			
Geometría A				Ai	ire interior 3!	5°C - 30% / A	gua refriger	ada 15°C - 20	°C					
Potencia frigorífica SHR EER	kW	43.7 1 35.65	58.6 1 40.36	68.2 1 35.22	80.2 1 37.03	89.3 1 36.57	102.3 1 39.16	112.9 1 36.84	133.9 1 39.46	172.9 1 35.16	237.5 1 32.17			
Geometría B				A	ire interior 3!	5°C - 30% / A	gua refriger	ada 15°C - 23	°C					
Potencia frigorífica SHR EER	kW	39.1 1 31.89	55 1 37.91	63.4 1 32.74	75.3 1 34.8	82.4 1 33.74	98.1 1 37.56	104.9 1 34.24	125.9 1 37.1	162.6 1 33.06	228.4 1 30.94			
Geometría C				A	ire interior 3!	5°C - 30% / A	-	ada 15°C - 27	°C					
Potencia frigorífica SHR EER	kW	33.9 1 27.67	50.1 1 34.49	56.5 1 29.17	67.9 1 31.35	73.9 1 30.24	87.9 1 33.68	91 1 29.7	112.3 1 33.1	145.1 1 29.49	210.6 1 28.52			
Caudal de aire nominal Potencia absorbida por los ventiladores Lp @ Nominal rpm; dist.= 2 m Q=2 Dimensiones Mod. "D" (Downflow)	m³/h kW dB(A) mm		10700 1.5 61		14500 2.2 37	18000 2.4 7 1760×20	_	24000 3.1 66	24000 3.4 67	18000 4.9 72 2510 x2000	31000 7.4 71 3160 ×2000			
[LxHxA] Alimentación eléctrica	V/ph/Hz	1010*20	0004000	12/0*20	0004000	400/3		2020*20	000,000	x890	x960			

Datos de rendimiento de las versiones Downflow. | También disponibles con alimentación de 60 Hz. | Unidades también disponibles en los modelos «U» (Upflow) y «X» (Displacement), excepto el tamaño 240. | Altura modelos Displacement 2250 mm.

TRF CS es la gama de acondicionadores por agua enfriada para entornos tecnológicos **con alta densidad de potencia.** Los ventiladores de las unidades TRF CS están colocados en un alojamiento separado (solución FREE FAN), **para aumentar la potencia frigorífica total de la unidad**, pero sin sacrificar la medida de fondo, que sigue siendo de 890 mm. Cada detalle ha sido realizado con extremo cuidado **para minimizar las pérdidas de carga del flujo de aire y el consumo de energía de los ventiladores**, la única carga eléctrica de la máquina.

Solución FREE FAN

La solución FREE FAN, con los ventiladores montados en un alojamiento separado, libera espacio en el interior de la unidad y aumenta así la superficie de la batería. El resultado es un aumento simultáneo del caudal de aire, del rendimiento frigorífico y la reducción de las pérdidas de carga de aire. La solución FREE FAN aumenta la densidad de potencia frigorífica de la gama.

- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Modulación de la velocidad de los ventiladores de acuerdo con la carga térmica (ΔT constante)
- Conexiones hidráulicas desde el fondo de la unidad
- Amplia gama de accesorios que incluyen plénum para canalización, plénum para Free Cooling directo
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Paneles sándwich solo en las puertas delanteras o en toda la máquina (opcional)
- Función de lectura instantánea del caudal de agua, de las temperaturas de entrada y salida del agua, o de la capacidad frigorífica suministrada (opcionales)

Ventilación EC 2.0

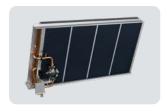
TRF CS

Los ventiladores PLUG EC, de serie en toda la gama, se pueden regular mediante diferentes **lógicas:** caudal, sobrepresión ΔP y ΔT constantes. Su regulación precisa permite un uso eficiente de la energía eléctrica que se consume en la ventilación y la consiguiente reducción del PUE **del sistema.** La regulación de la velocidad con rango ampliado se realiza mediante el protocolo Modbus. Por último, la función de «velocidad de emergencia» permite que el ventilador funcione incluso en caso de fallo de funcionamiento del microprocesador.

Numerosos tipos de válvulas para una regulación siempre precisa

Todas las unidades de la gama TRF CS están equipadas de serie con válvulas de regulación equipadas con servomotor de 0-10V, que se pueden seleccionar en la versión de 2 vías con sistema de caudal variable, o de 3 vías, o con servomotor con retorno por muelle. A pedido también se pueden montar válvulas independientes de la presión.

Todos estos tipos de válvulas garantizan la máxima precisión de regulación manteniendo el equilibrio hidrónico del sistema.


Regulación de la ventilación

En función de la lógica de distribución del aire en la sala de servidores, es posible elegir el sistema de ventilación más adecuado montado en la máquina, garantizando un caudal de aire constante (airflow control) o una sobrepresión disponible constante (Δp control); esta última está indicada especialmente en el caso de utilizar un suelo sobreelevado.

Doble circuito

045 055 065 075 150 180 200 210

Las unidades por agua enfriada también están disponibles con doble circuito. En esta versión, la alimentación se realiza a través de dos circuitos hidráulicos diferentes que ofrecen la máxima continuidad de funcionamiento en caso de fallo de uno de ellos. Cada circuito está equipado con una válvula de regulación.

Batería de aletas con tratamiento hidrofílico

Todos los modelos de la gama TRF CS incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida y la salida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

Sección filtrante ampliada

Los filtros de aire, colocados en toda la superficie de la batería, maximizan la sección filtrante y minimizan las pérdidas de carga de aire de la unidad.

IRF CS		U45	055	065	U/5	150	INU	200	210
Geometría A			Aire i	interior 24°	C - 50% /	Agua refrig	erada 7°C	- 12°C	
Potencia frigorífica	kW	68.9	81.8	104.7	131.2	165.3	200.5	-	-
SHR		0.82	0.8	0.82	0.78	0.8	0.78	-	-
EER		26.92	29.21	31.38	35.17	35.68	38.28	-	-
Geometría A			Aire i	nterior 30°	C - 35% / <i>I</i>	Agua refrig	erada 10°C	- 15°C	
Potencia frigorífica	kW	72.6	84.8	110.2	131.2	172.3	200.6	-	-
SHR		1	1	1	0.99	1	0.99	-	-
EER		28.35	30.26	33.05	35.19	37.19	38.29	-	-
GEOMETRÍA B			Aire i	nterior 30°	C - 35% / <i>I</i>	Agua refrig	erada 10°C	- 18°C	
Potencia frigorífica	kW	66	79.9	102.8	121.4	157.2	189.4	205.2	242.4
SHR		1	1	1	1	1	1	1	1
EER		25.81	28.53	30.82	32.56	33.93	36.15	29.64	31.42
Geometría C			Aire ii	nterior 30°	C - 35% / A	lgua refrigo	erada 10°C	- 22°C	
Potencia frigorífica	kW	58.2	70.6	88.4	109.7	135.1	167.7	176.4	218.9
SHR		1	1	1	1	1	1	1	1
EER		22.73	25.2	26.5	29.41	29.17	32	25.48	28.38
Geometría A			Aire in	nterior 35°(C - 30% / A	lgua refrigo	erada 15°C	- 20°C	
Potencia frigorífica	kW	72.9	84.9	110.8	130.2	173	199	-	-
SHR		1	1	1	1	1	1	-	-
EER		28.49	30.3	33.21	34.91	37.35	37.98	-	-
Geometría B			Aire in	nterior 35°(C - 30% / A	lgua refrigo	erada 15°C	- 23°C	
Potencia frigorífica	kW	67.8	79.7	103	121.2	157.4	188.9	205.5	241.8
SHR		1	1	1	1	1	1	1	1
EER		26.48	28.47	30.87	32.49	33.98	36.05	29.69	31.35
Geometría C			Aire ii	nterior 35°	C - 30% / A	lgua refrig	erada 15°C	- 27°C	
Potencia frigorífica	kW	58.8	71	89.3	110.2	136.5	168.5	178.2	220
SHR		1	1	1	1	1	1	1	1
EER		22.97	25.33	26.77	29.55	29.47	32.16	25.75	28.52
Caudal de aire nominal	m³/h	15500	15500	23550	23550	36000	36000	47000	47000
Potencia absorbida por los ventiladores	kW	2.6	2.8	3.3	3.7	4.6	5.2	6.9	7.7
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)		39	66	67		8	69	70
Dimensiones Mod. "D" (Downflow) [LxHxA]	mm	12/UX2U	000x890	1/6UX2U	100x890	251UX2U	000x890	316UX2U	000x890
Alimentación eléctrica	V/ph/Hz				400/3	5+N/50			
	.7 p117112				10070	n			

También disponibles con alimentación de 60 Hz. | Altura mínima con módulo ventiladores 2550 mm.

TRF CF es la gama de acondicionadores por agua enfriada para entornos tecnológicos **con alta densidad de potencia.** Al igual que la gama TRF CS, los ventiladores están montados en un alojamiento independiente, pero además las unidades están equipadas con **dos baterías de agua enfriada.** Con estas soluciones **se maximiza el rendimiento frigorífico** manteniendo una medida de fondo de 960 mm. Un minucioso análisis fluidodinámico ha permitido diseñar con máxima precisión todos los detalles de construcción de las unidades **para reducir al mínimo las pérdidas de carga en el flujo de aire y minimizar el consumo de energía de los ventiladores, la única carga eléctrica de la máquina.**

Solución FREE FAN

La solución FREE FAN, con los ventiladores montados en un alojamiento separado, libera espacio en el interior de la unidad y aumenta así la superficie de la batería. El resultado es un aumento simultáneo del caudal de aire, del rendimiento frigorífico y la reducción de las pérdidas de carga de aire. La solución FREE FAN aumenta la densidad de potencia frigorífica de la gama.

- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Modulación de la velocidad de los ventiladores de acuerdo con la carga térmica (ΔT constante)
- Conexiones hidráulicas desde el fondo de la unidad
- Amplia gama de accesorios que incluyen plénum para canalización, plénum para Free Cooling directo
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Paneles sándwich solo en las puertas delanteras o en toda la máquina (opcional)
- Función de lectura instantánea del caudal de agua, de las temperaturas de entrada y salida del agua, o de la capacidad frigorífica suministrada (opcionales)

Ventilación EC 2.0

Los ventiladores PLUG EC, de serie en toda la gama, se pueden regular mediante diferentes lógicas: caudal, sobrepresión ΔP y ΔT constantes. Su regulación precisa permite **un uso** eficiente de la energía eléctrica que se consume en la ventilación y la consiguiente reducción del PUE del sistema. La regulación de la velocidad con rango ampliado se realiza mediante el protocolo Modbus. Por último, la función de «velocidad de emergencia» permite que el ventilador funcione incluso en caso de fallo de funcionamiento del microprocesador.

Numerosos tipos de válvulas para una regulación siempre precisa

Todas las unidades de la gama TRF CF están equipadas de serie con válvulas de regulación equipadas con servomotor de 0-10V, que se pueden seleccionar en la versión de 2 vías con sistema de caudal variable, o de 3 vías, o con servomotor con retorno por muelle. A pedido también se pueden montar válvulas independientes de la presión.

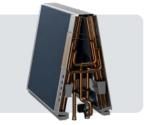
Todos estos tipos de válvulas garantizan la máxima precisión de regulación manteniendo el equilibrio hidrónico del sistema.

Regulación de la ventilación

En función de la lógica de distribución del aire en la sala de servidores, es posible elegir el sistema de ventilación más adecuado montado en la máquina, garantizando un caudal de aire constante (airflow control) o una sobrepresión disponible constante (ΔP control); esta última está indicada especialmente en el caso de utilizar un suelo sobreelevado.

Doble circuito

Las unidades por agua enfriada también están disponibles con doble circuito. En esta versión, la alimentación se realiza a través de dos circuitos hidráulicos diferentes que ofrecen la máxima continuidad de funcionamiento en caso de fallo de uno de ellos. Cada circuito está equipado con una válvula de regulación.


Batería de aletas con tratamiento hidrofílico

Todos los modelos de la gama TRF CF incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida y la salida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

Doble batería

La solución con doble batería, diseñada para optimizar el espacio interior de la unidad, aumenta significativamente la superficie de intercambio térmico e incrementa la potencia frigorífica suministrable.

TRF CF 045 055 065 075 150 180 200 210 Geometría A Aire interior 24°C - 50% / Agua refrigerada 7°C - 12°C Potencia frigorífica 111.2 154.5 191.2 234.5 92.8 kW SHR 0.78 0.77 0.73 0.78 0.74 33.56 26.02 30.55 38.75 24.78 Geometría A Aire interior 30°C - 35% / Agua refrigerada 10°C - 15°C Potencia frigorífica 911 102 4 154 176.7 233 7 kW SHB N 93 N 94 32.94 **EER** 35.68 25.93 28.23 24.7 Geometría B Aire interior 30°C - 35% / Agua refrigerada 10°C - 18°C Potencia frigorífica kW 85.9 97.9 141.8 164.6 219.8 254.3 283.7 329.2 SHR 0.95 0.98 0.97 0.98 31.06 34.14 23.88 26.31 23.23 25.54 22.07 24.28 Geometría C Aire interior 30°C - 35% / Agua refrigerada 10°C - 22°C Potencia frigorífica 77.6 127.2 300.4 90.6 153.2 193 232.5 254.4 SHR 28.06 31.59 21.41 24.49 20.4 23.35 19.79 22.16 Geometría A Aire interior 35°C - 30% / Agua refrigerada 15°C - 20°C Potencia frigorífica kW 91.2 100.5 154.4 173.6 234.2 SHR EER 32.99 35.03 25.99 27.75 24.75 Geometría B Aire interior 35°C - 30% / Agua refrigerada 15°C - 23°C Potencia frigorífica 253.2 kW 85.7 96.6 141.7 163.9 219.5 283.4 327.9 SHR FFR 30.99 33.68 23.85 26.2 23.2 25 43 22.05 24.18 Geometría C Aire interior 35°C - 30% / Agua refrigerada 15°C - 27°C Potencia frigorífica kW 78 89.9 128 153.6 194.2 233 256 301.2 SHR EER 28 19 31 35 21 55 2/, 5/, 20 53 23 41 19 92 22.22 Caudal de aire nominal 44000 m3/h 16500 16500 29000 29000 44000 58000 58000 Potencia absorbida por los ventiladores 2.8 2.9 9.5 12.9 13.6 kW 5.9 6.3 10 Lp @ Nominal rpm; dist.= 2 m 0=2 dB(A) Dimensiones [LxHxA] 1270x2000x960 1760x2000x960 2510x2000x960 3160x2000x960 mm Alimentación eléctrica V/ph/Hz 400/3+N/50

También disponibles con alimentación de 60 Hz. | Altura mínima con módulo ventiladores 2550 mm.

Los acondicionadores perimetrales de la serie NRG están diseñados para la climatización de entornos tecnológicos de **alta densidad térmica** en los que se requiere **un control preciso de los parámetros termohigrométricos y un funcionamiento continuo.** El uso de compresores controlados por inverter, **que logran seguir la carga térmica con extrema precisión**, de ventiladores EC de serie, de válvulas de laminación con control electrónico de serie permite **alcanzar un alto rendimiento con un consumo reducido de energía, favoreciendo el PUE del Data Center.** El punto fuerte de la nueva gama NRG es el elevado rendimiento específico (kW/m²), que se obtiene gracias a un minucioso diseño interior, un bastidor de tan solo 890 mm de fondo y a la particular selección de los componentes. Es posible elegir diferentes configuraciones frigoríficas:

Gama versátil y flexible

 $\label{thm:configuration} Es \ posible \ elegir \ differentes \ configuraciones \ frigor\'ificas:$

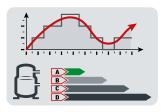
NRG A Condensación por aire con condensador remoto.

NRG W Condensación por agua o Dry Cooler.

NRG **Z** Condensación por agua de red (15°C).

NRG F Condensación por aqua y Free Cooling indirecto por aqua.

NRG D Condensación por aire con condensador remoto y Dual Cooling.

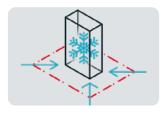

NRG K Condensación por agua o Dry Cooler y Dual Cooling.

NRG Condensación por agua de red (15°C) y Dual Cooling.

Los NRG A son las unidades perimetrales condensadas por aire de la gama NRG y se utilizan ampliamente en la refrigeración de Data Centers. La solución condensada por aire **ofrece un sistema sencillo,** por la ausencia de otros circuitos auxiliares y bombas, **una gestión fácil**, ya que el circuito frigorífico se controla desde el armario, y una **instalación fácil** tanto de la unidad interna como del condensador remoto.

- Refrigerante R410A
- Ventiladores EC
- Compresores Scroll inverter
- Válvula de expansión electrónica (opcional)
- Control avanzado microprocesado, programable con display LCD
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas, agua caliente y gas caliente (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (△p control) (opcionales)
- Kit de bajas temperaturas para un funcionamiento ideal en caso de instalación en entornos muy fríos (opcional)
- Kit de larga distancia para un funcionamiento ideal en caso de grandes distancias entre las unidades interna y externa (opcional)

Modulación de la potencia


Las unidades NRG A se adaptan rápidamente a la demanda frigorífica del Data Center, Gracias al compresor controlado por inverter, es posible modular el rendimiento hasta el 25% del rendimiento nominal, reduciendo al mismo tiempo el consumo. Esto garantiza un funcionamiento continuo de la unidad incluso con cargas bajas, sin que se produzcan ciclos de encendido y apagado.

Hacia la máxima eficiencia del sistema

Las opciones de diseño adoptadas incluyen, además del uso de válvulas de expansión con control electrónico, la gestión mediante Modbus de los compresores scroll de velocidad variable y de los ventiladores de conmutación electrónica EC.

Estas características permiten obtener una adquisición, gestión y regulación muy precisa de los parámetros de funcionamiento y, por tanto, de los valores termohigrométricos en la sala de servidores, con altos niveles de eficiencia energética.

Máxima densidad de potencia

El diseño interno y la particular disposición de los componentes de la nueva plataforma TRF Evolution, utilizada en las unidades NRG, han sido estudiados para maximizar la superficie de intercambio de la batería de evaporación. Estas características, junto con el uso de ventiladores de conmutación electrónica EC de última generación de alto caudal de aire, han permitido aumentar la densidad de potencia. Por lo tanto, el espacio ocupado en la sala de servidores se aprovecha al máximo y esto hace que las unidades NRG A sean aptas para aplicaciones de alta densidad de carga térmica, típicas de los Data Centers de última generación.

Condensadores remotos

Todas las unidades pueden combinarse con los condensadores remotos HiRef v es posible seleccionar diferentes combinaciones, diseñadas para satisfacer todas las demandas del sistema. Los condensadores remotos de gran tamaño son ideales para entornos más cálidos, donde es necesario mantener la temperatura de condensación bajo control; por el contrario, **los condensadores** compactos poseen dimensiones pequeñas y consumos limitados. Los condensadores, combinados con unidades de dos circuitos, están disponibles con un solo cirmáxima fiabilidad y redundancia

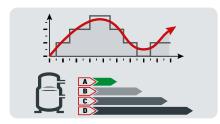
cuito frigorífico para obtener la del sistema, o con dos circuitos frigoríficos para reducir el espacio y los costes de instalación.

NRG A		0091	0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962	1003	1103
							Aire in	terior 2	4°C - 50	% / Aire	exterio	r 35°C					
Potencia frigorífica	kW	9.3	12.3	19.8	23.8	31.3	38.1	44	47.7	56.8	58.2	73.8	77.3	81.4	93.3	109.2	127
SHR		0.89	0.94	1	1	1	0.99	0.93	0.99	0.91	0.99	0.93	0.99	1	0.94	0.87	0.81
EER		3.74	3.71	4	3.99	4.19	3.9	3.46	3.89	3.78	3.85	3.72	3.83	4.21	4.1	4.06	3.61
Potencia absorbida total	kW	2.7	3.7	6.2	7.2	9.3	11.6	14.5	14.5	17.2	18	23.8	25.1	25.2	28.6	32.8	41.1
							Aire in	terior 3	0°C - 35	% / Aire	exterio	r 35°C					
Potencia frigorífica	kW	10	13.9	22.5	27	35.5	43.2	48.7	53.7	62.9	65.6	81.9	87.3	92	104.1	119	135.7
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.97
EER		3.94	4.09	4.44	4.42	4.67	4.32	3.67	4.2	4.11	4.23	3.98	4.16	4.65	4.45	4.37	3.79
Potencia absorbida total	kW	2.7	3.8	6.3	7.4	9.4	11.8	15.1	15	17.5	18.4	24.5	25.9	25.6	29.3	33.1	41.7
							Aire in	terior 3	5°C - 30	% / Aire	exterio	r 35°C					
Potencia frigorífica	kW	10.8	15.2	25	29.9	39.2	47.5	53.4	59	68.9	72.3	90	96.1	101.2	114.3	130.1	147.2
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4.18	4.35	4.86	4.81	5.08	4.66	3.9	4.48	4.43	4.59	4.25	4.45	5.02	4.81	4.69	4.04
Potencia absorbida total	kW	2.8	3.9	6.4	7.4	9.5	12	15.5	15.4	17.8	18.6	25.1	26.5	26	29.6	33.6	42.3
Caudal de aire nominal	m³/h	2150	3700	8800	8800	11720	11720	11720	14300	14300	17500	19900	23700	25300	25300	25300	25300
Núm. de circuitos		1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2
N. compressori inverter		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Núm. de compresores on/off		-	-	-	-	-	-	-	-	-	-	-	-	1	1	2	2
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	50	54	7	0	71	7	14	75		7		7	6		7	7
Dimensiones [LxHxA]	mm	600 x1875 x600	900 x1875 x600	1010x20	100 x 890	127	0x2000x	890	x2	60 000 190	x21	20 000 90		251	0x2000x	890	
Alimentación eléctrica	V/ph/Hz								400/3	+N/50							

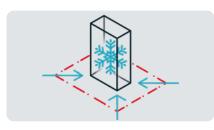
Datos de rendimiento de las versiones Downflow combinadas con el condensador remoto HiRef estándar. | También disponibles con alimentación de 60 Hz. | Altura de los modelos Displacement 2125 mm para los tamaños 0091-0131.

Los NRG W son armarios perimetrales condensados por agua. La **serie W** utiliza agua de Dry Cooler. Los NRG de esta serie son unidades monobloc en cuyo interior se concentra todo el circuito frigorífico; la condensación se produce gracias a un intercambiador de placas con soldadura fuerte de acero inoxidable AISI 304.

Los NRG Z son armarios perimetrales condensados por agua. La **serie Z** utiliza agua de red o agua subterránea a baja temperatura (15°C). Los NRG de esta serie son unidades monobloc en cuyo interior se concentra todo el circuito frigorífico; **la condensación se produce gracias a un intercambiador de placas con soldadura fuerte de acero inoxidable AISI 304.**


CONDENSADO POR AGUA DE RED

- Refrigerante R410A
- Ventiladores EC
- Compresores Scroll inverter
- Válvula de expansión electrónica (opcional)
- Control avanzado microprocesado, programable con display LCD
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas, agua caliente y gas caliente (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (Δp control) (opcionales)
- Kit de bajas temperaturas para un funcionamiento ideal en caso de instalación en entornos muy fríos (opcional)



Modulación de la potencia

Las unidades NRG W se adaptan rápidamente a la demanda frigorífica del Data Center. Gracias al compresor controlado por inverter, es posible modular el rendimiento **hasta el 25%** del rendimiento nominal, reduciendo al mismo tiempo el consumo. Esto garantiza un funcionamiento continuo de la unidad incluso con cargas bajas, sin que se produzcan ciclos de encendido y apagado.

Máxima densidad de potencia

El diseño interno y la particular disposición de los componentes de la nueva plataforma TRF Evolution, utilizada en las unidades NRG, han sido estudiados para maximizar la superficie de intercambio de la batería de evaporación. Estas características, junto con el uso de ventiladores de commutación electrónica EC de última generación de alto caudal de aire, han permitido aumentar la densidad de potencia. Por lo tanto, el espacio ocupado en la sala de servidores se aprovecha al máximo y esto hace que las unidades NRG W sean aptas para aplicaciones de alta densidad de carga térmica, típicas de los Data Centers de última generación.

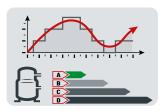

Hacia la máxima eficiencia del sistema

Las opciones de diseño adoptadas incluyen, además del uso de válvulas de expansión con control electrónico, la gestión mediante Modbus de los compresores scroll de velocidad variable y de los ventiladores de conmutación electrónica EC.

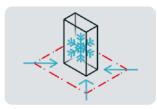
Estas características permiten obtener una adquisición, gestión y regulación muy precisa de los parámetros de funcionamiento y, por tanto, de los valores termohigrométricos en la sala de servidores, con altos niveles de eficiencia energética.

	0091	0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	096
					Air	e interior	· 24°C - 50)% / Agua	40°C - 4	5°C				
kW	8.8	11.9	20.4	24.5	32.1	37.1	44.1	46.3	54.3	56.3	71.3	74.8	82.8	90.1
	0.85	0.95	1	1	1	0.98	0.91	0.98	0.91	0.98	0.93	0.99	0.99	0.93
	3.15	3.37	4.43	4.38	4.58	3.97	3.77	3.94	3.64	3.82	3.66	3.83	4.47	4.01
kW	3	3.9	5.8	6.8	8.8	11.1	13.5	14	17.1	17.6	23.4	24.5	24.4	28.
					Air	e interior	30°C - 35	% / Aqua	40°C - 4	5°C				
kW	9.5	13.5	23.6	28.2	36.9	42.4	49.3	52.9	60.5	64.1	79.8	85.6	95	101.
	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	3.34	3.77	5.26	5.14	5.35	4.56	4.2	4.47	4.05	4.35	4.05	4.32	5.18	4.5
kW	3	4	5.7	6.7	8.7	11.1	13.5	14.1	17.2	17.6	23.6	24.7	24.2	28
					Air	e interior	35°C - 30	% / Aqua	40°C - 4	5°C				
kW	10.3	14.8	26.4	31.3							88.1	94.8	105.4	112
	1	1			1	1	1	1						1
	3.57	4.11			6.16	5.12	4.63	4.95						5.0
kW	3.1	4	5.6	6.6	8.5	11	13.6	14.1	17.1	17.5	23.8	25	24	28
m³/h	2150	3700	8800	8800	11720	11720	11720	14300	14300	17500	19900	23700	25300	253
111 711	1	1	1	1	1	1	1	1	1	17300	1	1		2 2
	1	1	1	1	1	1	1	1				1	1	1
		'	,	· ·					·		· '	ı '	1	1
dB(A)	50	54	7	0	71	7	74	75	-	17			76	
(,	600	900												
mm	x1875 x600	x1875 x600	1010x20	00x890	127	70x2000x8	390	1760x20	00x890	2020x2	000x890	2!	510x2000x	890
V/ph/Hz							400/3	+N/50						
	0091	0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	096
					Air	e interio	24°C - 50)% / Anus	15°C _ 3	n°r				
LW.	0.7	17.6	22.0	27.1							70.7	0/. 7	07/	102
L/ AA														0.8
														6.3
kW														21.
I. W	2.0	2.0	7.7	J.Z							10.0	10.0	10	21.
kW							_							112
														1
1.11/							_							7.
KW	2.3	۷.8	4.2	4.9	0.4	8.4	10.5	10.8	15.4	15.7	18.9	20	18.5	21.
					Air	e interio	r 35°C - 30)% / Agua	a 15°C - 3	0°C				
kW	11.1	16.5	28.7	34.1	44.9	51.6	59.9	65	73.5	78.2	96.6	104.2	115.6	12
	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	5.14	6.74	10.68	9.85	10.53	8.06	6.98	7.7	6.69	7.39	6.4	6.88	9.64	8.0
kW	2.3	2.8	3.9	4.7	6.1	8.2	10.4	10.7	13.2	13.5	19	20.1	17.9	21.
m³/h	2150	3700	8800	8800	11720	11720	11720	14300	14300	17500	19900	23700	25300	253
		1	1	1	1	1	1	1	1	1	1	1	2	2
						_							_	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	
	1	1 -	1 -	1	1	1	1	1	1	1	1	1	1	1
dB(A)	-		1 - 7	-	1 - 71	-	1 - 74	- 75	-	1 - 17	-	-	1 1 76	1
dB(A)	1 1 - 50 600	-	-	-	-	-	-	-	-	-	-	-	1	1
dB(A)	- 50	- 54	-	-	71	-	74	- 75	-	- 17	1 - 000×890	-	1	1
	kW kW kW kW m³/h dB(A) mm V/ph/Hz kW kW kW	kW 8.8 0.85 3.15 kW 3 kW 9.5 1 3.34 kW 3 kW 10.3 1 3.57 kW 3.1 m³/h 2150 1 1 1 dB(A) 50 600 x1875 x600 V/ph/Hz 0091 kW 9.7 0.85 4.51 kW 2.3 kW 10.3 1 4.8 kW 2.3	RW 8.8 11.9 0.85 0.95 3.15 3.37 3.9	RW 8.8 11.9 20.4 0.85 0.95 1 3.15 3.37 4.43 3.89 5.8 KW 9.5 13.5 23.6 1	RW 8.8 11.9 20.4 24.5 0.85 0.95 1	Riv Riv	RW 8.8 11.9 20.4 24.5 32.1 37.1 0.95	RW 8.8 11.9 20.4 24.5 32.1 37.1 44.1	Mile interior 24°C - 50% / Agua	RW 8.8 11.9 20.4 24.5 32.1 37.1 44.1 46.3 54.3 54.3 3.15 3.37 4.43 4.38 4.58 3.97 3.77 3.94 3.64 3.64 3.3 3.9 5.8 6.8 8.8 11.1 13.5 14 17.1 3.5 14 17.1 3.34 3.64 3.34 3.77 5.26 5.14 5.35 4.56 4.2 4.47 4.05 4.57 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.56 4.2 4.47 4.05 4.57 6.7 8.7 3.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.55 4.11 3.15 3.14 3.15 3.1	No.	Riverside	No.	No. Section Section

Las unidades NRG F son armarios perimetrales condensados por agua que aprovechan el efecto **de Free-Cooling indirecto por agua.** La serie F utiliza agua de Dry Cooler tanto como fuente frigorífica para el Free-Cooling, como fluido de intercambio térmico para la condensación del circuito frigorífico. Los NRG F son unidades monobloc en las que se concentra **todo el circuito frigorífico.** La condensación se produce gracias a un **intercambiador de placas con soldadura fuerte de acero inoxidable AISI 304.**



- Refrigerante R410A
- Ventiladores EC
- Compresores Scroll inverter
- Válvula de expansión electrónica (opcional)
- Control avanzado microprocesado, programable con display LCD
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (Δp control) (opcionales)



Modulación de la potencia

Las unidades NRG F se adaptan rápidamente a la demanda frigorífica del Data Center. Gracias al compresor controlado por inverter, es posible modular el rendimiento hasta el 25% del rendimiento nominal, reduciendo al mismo tiempo el consumo. Esto garantiza un funcionamiento continuo de la unidad incluso con cargas bajas, sin que se produzcan ciclos de encendido y apagado.

Máxima densidad de potencia

El diseño interno y la particular

disposición de los componentes de la nueva plataforma TRF Evolution, utilizada en las unidades NRG, han sido estudiados **para maximizar** la superficie de intercambio de la batería de evaporación. Estas características, junto con el uso de ventiladores de conmutación electrónica EC de última generación de alto caudal de aire, han permitido aumentar la densidad de potencia. Por lo tanto, el espacio ocupado en la sala de servidores se aprovecha al máximo y esto hace que las unidades NRG F sean aptas para aplicaciones de alta densidad de carga térmica, típicas de los Data Centers de última generación.

Hacia la máxima eficiencia del sistema

Las opciones de diseño adoptadas incluyen, además del uso de válvulas de expansión con control electrónico, la gestión mediante Modbus de los compresores scroll de velocidad variable y de los ventiladores de comutación electrónica EC. Estas características permiten obtener una adquisición, gestión y regulación muy precisa de los parámetros de funcionamiento y, por tanto, de los valores termohigrométricos en la sala de servidores, con altos niveles de eficiencia energética.

Máximo ahorro de energía

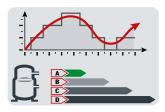
Cuando el aire exterior tiene una temperatura inferior a la del aire caliente del interior de la sala del CPD, el agua fría producida por el dry cooler alimenta directamente la batería de intercambio térmico, que logra suministrar una parte o la totalidad de la capacidad frigorífica necesaria. Antes de volver al dry cooler, el agua se reutiliza dentro del intercambiador de placas que sirve al compresor. Todo el proceso está regulado por una válvula de 3 vías controlada directamente por el software de HiRef, que maximiza el efecto de Free-Cooling y controla el circuito frigorífico. De esta manera se reduce significativamente el trabajo del compresor hasta que se apaga en condiciones de Free-Cooling total, con una reducción importante del PUE del

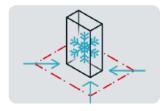
NRG F		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
				Aire i	nterior 24	°C - 50% /	/ Agua 40°(: - 45°C /	Agua Free	-Cooling	7°C / Glice	ol 30%		
Potencia frigorífica	kW	11.4	19.3	22.9	29.3	33.7	39.9	43.7	51	51.8	64.2	69.7	76.2	82.7
SHR		0.92	1	0.99	1	0.92	0.85	0.95	0.88	0.94	0.84	0.95	0.93	0.87
EER		3.18	4.14	4.05	4.12	3.57	3.41	3.7	3.4	3.5	3.31	3.56	4.08	3.71
Potencia frigorífica Free-Cooling	kW	8.8	22.5	24.6	33.3	37.8	40.8	48	52	56.4	65.8	80.4	80.4	86.8
SHR Free-Cooling		0.93	1	0.9	0.9	0.84	0.81	0.87	0.83	0.87	0.8	0.85	0.85	0.81
Potencia absorbida total	kW	4	5.8	6.8	8.7	11	13.3	14.1	17.3	17.5	22.1	24.2	23.3	27
				Aire in	iterior 30°	°C - 35% /	Agua 40°C	- 47°C /	Agua Free	-Cooling 1	12°C / Glic	ol 30%		
Potencia frigorífica	kW	12.5	21.9	25.7	32.9	37.3	43.1	48.7	55.5	57.8	68.9	77.7	84.2	89.5
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.36	4.6	4.44	4.51	3.85	3.56	3.97	3.59	3.79	3.43	3.82	4.36	3.87
Potencia frigorífica Free-Cooling	kW	8.5	22.6	24	31.5	34.4	35.3	45.5	48	53.4	57.9	73.2	75.2	77.3
SHR Free-Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	4.2	5.9	6.9	8.9	11.3	13.7	14.5	17.7	18	22.8	25	24	27.8
				Aire in	nterior 35°	°C - 30% /	Agua 40°C	- 47°C /	Agua Free	-Cooling	17°C / Glic	ol 30%		
Potencia frigorífica	kW	13.9	24.3	28.6	36.6	41.6	47.6	54	61.2	63.6	75.9	85.4	93.2	99.2
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.69	5.21	5.01	5.08	4.3	3.9	4.38	3.95	4.17	3.73	4.15	4.86	4.28
Potencia frigorífica Free-Cooling	kW	9	23.5	24.9	33.6	35.5	36.6	48.2	49.7	56.6	58.4	77.5	77.5	80
SHR Free-Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	4.2	5.8	6.8	8.8	11.3	13.8	14.6	17.7	18	23	25.2	23.8	27.8
Caudal de aire nominal	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Núm. de circuitos		1	1	1	1	1	1	1	1	1	1	1	2	2
N. compressori inverter		1	1	1	1	1	1	1	1	1	1	1	1	1
Núm. de compresores on/off		-	-	-	-	-	-	-	-	-	-	-	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	54		70			74	75	7	7	75	76	7	5
Dimensiones [LxHxA]	mm	900 x1875 x600	1010×2	000x890	12	70x2000x8	390	1760×2	000x890	2020×2	000×890	2	510×2000×8	90
Alimentación eléctrica	V/nh/Hz						4	NN/3+N/5	n					

Datos de rendimiento de las versiones Downflow. | También disponibles con alimentación de 60 Hz. | Altura de los modelos Displacement 2125 mm para el tamaño 0131.

NRG D/K/Q son unidades Dual Cooling. Combinan la tradicional batería evaporativa del circuito frigorífico con el **efecto refrigerante del agua enfriada** procedente de una unidad externa, como una enfriadora. El uso de una doble fuente **permite garantizar continuidad al sistema y elegir la mejor solución de funcionamiento en cada ocasión, para minimizar los gastos de explotación.**

Condensadores remotos


Todas las unidades NRG D pueden combinarse con los condensadores remotos HiRef y es posible seleccionar diferentes combinaciones, diseñadas para satisfacer todas las demandas del sistema. Los condensadores remotos de gran tamaño son ideales para entornos más cálidos, donde es necesario mantener la temperatura de condensación bajo control; por el contrario, los condensadores compactos poseen dimensiones pequeñas y consumos limitados. Los condensadores, combinados con unidades de dos circuitos, están disponibles con un solo circuito frigorífico para obtener la máxima fiabilidad y redundancia del sistema, o con dos circuitos frigoríficos para reducir el espacio y los costes de instalación.


- 🗷 Solo Mod. Q e K
- Refrigerante R410A
- Ventiladores EC
- Compresores Scroll inverter
- Válvula de expansión electrónica (opcional)
- Control avanzado microprocesado, programable con display LCD
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (Δp control) (opcionales)
- Kit de larga distancia para un funcionamiento ideal en caso de grandes distancias entre las unidades interna y externa (opcional, disponible solo para la versión D)
- Kit de bajas temperaturas para un funcionamiento ideal en caso de instalación en entornos muy fríos (opcional)

Modulación de la potencia

Las unidades NRG D se adaptan rápidamente a la demanda frigorífica del Data Center, Gracias al compresor controlado por inverter, es posible modular el rendimiento hasta el 25% del rendimiento nominal, **reduciendo al mismo tiempo** el consumo. Esto garantiza un funcionamiento continuo de la unidad incluso con cargas bajas, sin que se produzcan ciclos de encendido y apagado.

Máxima densidad de potencia

El diseño interno y la particular disposición de los componentes de la nueva plataforma TRF Evolution, utilizada en las unidades NRG, han sido estudiados **para maximizar** la superficie de intercambio de la batería de evaporación. Estas características, junto con el uso de ventiladores de conmutación electrónica EC de última generación de alto caudal de aire, han permitido aumentar la densidad de potencia. Por lo tanto, el espacio ocupado en la sala de servidores se aprovecha al máximo y esto hace que las unidades NRG D sean aptas para aplicaciones de alta densidad de carga térmica, típicas de los Data Centers de última generación.

Hacia la máxima eficiencia del sistema Las opciones de diseño adoptadas

incluyen, además del uso de válvulas de expansión con control electrónico, la gestión mediante Modbus de los compresores scroll de velocidad variable y de los ventiladores de conmutación electrónica EC. Estas características permiten obtener una adquisición, gestión y regulación muy precisa de los parámetros de funcionamiento y, por tanto, de los valores termohigrométricos en la sala de servidores, con altos niveles de eficiencia energética.

CONDENSADO

POR AIRE CON

DUAL-COOLING

Máxima flexibilidad

Las unidades Dual Cooling permiten combinar la fiabilidad de una fuente doble con la sencillez de funcionamiento de los armarios **HiRef.** El control incorporado en la máquina permite seleccionar la fuente según diferentes lógicas, a elección del cliente.

NRG D		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
				Ai	re interior	24°C - 50	% / Aire e	xterior 35	°C / Agua	refrigera	da 7°C - 12	2°C		
Potencia frigorífica	kW	11.7	18.8	22.4	28.8	33.4	38.5	43	51.3	51.6	64	69	73.6	82.8
SHR		0.9	1	1	1	0.93	0.87	0.96	0.88	0.94	0.84	0.95	0.94	0.87
EER		3.57	3.81	3.77	3.91	3.47	3.1	3.55	3.44	3.46	3.3	3.48	3.72	3.72
Potencia frigorífica agua enfriada	kW	8.2	29.1	29.1	40.8	40.8	40.8	56	56	65.8	65.8	90	90	90
SHR acqua refrigerata		1	0.82	0.82	0.81	0.81	0.81	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Potencia absorbida total	kW	3.7	6.1	7.1	8.9	11.2	14	14.4	17.2	17.6	22.1	24.5	24.5	26.9
				Ai	re interior	30°C - 35°	% / Aire e	xterior 35	°C / Agua	refrigerad	la 10°C - 1	5°C		
Potencia frigorífica	kW	13	21.4	25.3	32.5	37.2	42	48.4	56.2	57.7	69.7	77.5	82.3	90.1
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.89	4.26	4.19	4.33	3.77	3.31	3.87	3.72	3.79	3.51	3.8	4.05	3.96
Potencia frigorífica agua enfriada	kW	10.5	31.4	31.4	42.3	42.3	42.3	57.5	57.5	67.5	67.5	92.5	92.5	92.5
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	3.8	6.1	7.2	9.1	11.4	14.3	14.8	17.4	17.9	22.5	25.1	25	27.4
				Air	e interior	35°C - 30 °	% / Aire ex	cterior 35	°C / Agua	refrigerad	a 15°C - 2	0°C		
Potencia frigorífica	kW	14.4	23.5	27.9	36	41	46.1	52.9	61.4	63.3	75.7	85	90.4	98.9
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4.2	4.63	4.56	4.73	4.1	3.51	4.1	3.99	4.09	3.71	4.04	4.33	4.25
Potencia frigorífica agua enfriada	kW	10.7	31.6	31.6	42.7	42.7	42.7	57.9	57.9	68	68	93.1	93.1	93.1
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	3.9	6.2	7.3	9.2	11.6	14.7	15.2	17.7	18.2	23.1	25.7	25.5	27.9
Caudal de aire nominal	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Núm. de circuitos		1	1	1	1	1	1	1	1	1	1	1	2	2
N. compressori inverter		1	1	1	1	1	1	1	1	1	1	1	1	1
Núm. de compresores on/off		-	-	-	-	-	-	-	-	-	-	-	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	54		70		7	4	75	7	7	75	76	7	'5
Dimensiones [LxHxA]	mm	900 x1875 x600	1010×20	100x890	12	70x2000x8	90	1760x20	000x890	2020x20	000x890	25	10x2000x8	90
Alimentación eléctrica	V/ph/Hz							400/3+N/5)					

Datos de rendimiento de las versiones Downflow combinadas con el condensador remoto HiRef estándar. | También disponibles con alimentación de 60 Hz. | Altura de los modelos Displacement 2125 mm para el tamaño 0131.

Plataforma TRF Evolution

NRG D/K/Q

NRG K		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
				Ai	re interio	r 24°C - 50	% / Agua	40°C - 45	°C / Agua	refrigera	da 7°C - 12°	°C		
Potencia frigorífica	kW	11.4	19.3	23	29.4	33.8	40.1	43.6	51.2	52	64.5	69.7	76	83.1
SHR		0.91	1	0.99	1	0.92	0.85	0.95	0.88	0.94	0.84	0.95	0.93	0.87
EER		3.23	4.16	4.1	4.16	3.61	3.46	3.72	3.44	3.54	3.35	3.59	4.1	3.75
Potencia frigorífica agua enfriada	kW	8.2	29.1	29.1	40.8	40.8	40.8	56	56	65.8	65.8	90	90	90
SHR acqua refrigerata		1	0.82	0.82	0.81	0.81	0.81	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Potencia absorbida total	kW	4	5.8	6.7	8.6	10.9	13.2	14	17.2	17.4	22	24.1	23.2	26.8
				Aiı	re interior	· 30°C - 35	% / Agua	40°C - 45°	C / Agua i	refrigerad	la 10°C - 15	°C		
Potencia frigorífica	kW	12.7	22.2	26.1	33.4	38.1	43.7	49.4	56.3	58.6	69.9	78.8	86	91
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.57	4.89	4.71	4.77	4.08	3.75	4.18	3.77	3.98	3.59	4.01	4.65	4.1
Potencia frigorífica agua enfriada	kW	10.5	31.4	31.4	42.3	42.3	42.3	57.5	57.5	67.5	67.5	92.5	92.5	92.5
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	4	5.7	6.7	8.6	10.9	13.3	14.1	17.2	17.4	22.2	24.3	23.2	26.9
				Air	e interior	35°C - 30	% / Agua	40°C - 45°	C / Agua r	efrigerad	a 15°C - 20	°C		
Potencia frigorífica	kW	14.1	24.7	29.1	37.2	42.1	48.2	55.1	62.4	64.5	77	87	94.4	100.8
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.93	5.56	5.32	5.41	4.54	4.11	4.65	4.18	4.38	3.92	4.38	5.14	4.54
Potencia frigorífica agua enfriada	kW	10.7	31.6	31.6	42.7	42.7	42.7	57.9	57.9	68	68	93.1	93.1	93.1
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	4	5.6	6.6	8.5	10.9	13.3	14.1	17.2	17.4	22.3	24.5	23	26.9
Caudal de aire nominal	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Núm. de circuitos		1	1	1	1	1	1	1	1	1	1	1	2	2
N. compressori inverter		1	1	1	1	1	1	1	1	1	1	1	1	1
Núm. de compresores on/off		-	-	-	-	-	-	-	-	-	-	-	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	54		70		7	4	75	7	7	75	76	7	5
Dimensiones [LxHxA]	mm	900 x1875 x600	1010×20	000x890	12	70×2000×8	90	1760×20	100x890	2020x2	000x890	2	510x2000x8	90
Alimentación eléctrica	V/ph/Hz							400/3+N/50)					

Datos de rendimiento de las versiones Downflow. | También disponibles con alimentación de 60 Hz. | Altura de los modelos Displacement 2125 mm para el tamaño 0131.

NRG Q		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
				A	ire interio	r 24°C - 50)% / Agua	15°C - 30°	°C / Agua	refrigerad	la 7°C - 12°	C		
Potencia frigorífica	kW	12.9	21.4	25.6	32.4	37.9	45.3	49.6	57.6	57.8	71.5	77.8	86.2	94.3
SHR		0.86	1	0.94	0.97	0.87	0.81	0.89	0.83	0.89	0.8	0.89	0.87	0.82
EER		5.15	6.59	6.36	6.41	5.49	5.19	5.69	5.09	5.21	4.84	5.24	6.46	5.82
Potencia frigorífica agua enfriada	kW	8.2	29.1	29.1	40.8	40.8	40.8	56	56	65.8	65.8	90	90	90
SHR acqua refrigerata		1	0.82	0.82	0.81	0.81	0.81	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Potencia absorbida total	kW	2.9	4.4	5.1	6.6	8.5	10.3	11	13.6	13.8	17.5	19.5	18	20.9
				Ai	re interio	r 30°C - 35	% / Agua	15°C - 30°	C / Agua r	efrigerad	a 10°C - 15°	°C		
Potencia frigorífica	kW	13.9	24.5	28.7	36.7	41.7	48.2	54.9	61.8	64.3	76.6	86.5	94.1	101.1
SHR		1	1	1	1	1	0.97	1	0.99	1	0.96	1	1	0.98
EER		5.62	8.04	7.48	7.58	6.12	5.52	6.33	5.49	5.84	5.17	5.78	7.19	6.29
Potencia frigorífica agua enfriada	kW	10.5	31.4	31.4	42.3	42.3	42.3	57.5	57.5	67.5	67.5	92.5	92.5	92.5
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	2.9	4.2	5	6.4	8.4	10.3	10.9	13.5	13.7	17.5	19.6	17.7	20.7
				Ai	re interior	35°C - 30	% / Agua	15°C - 30°	C / Agua r	efrigerad:	a 15°C - 20	°C		
Potencia frigorífica	kW	15.4	26.9	31.7	40.5	45.7	52.7	60.2	67.7	70.7	83.4	94.9	103.8	110.3
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		6.27	9.47	8.7	8.81	6.85	6.06	7.02	6.08	6.52	5.58	6.29	8.21	6.95
Potencia frigorífica agua enfriada	kW	10.7	31.6	31.6	42.7	42.7	42.7	57.9	57.9	68	68	93.1	93.1	93.1
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	2.9	4	4.8	6.2	8.3	10.3	10.9	13.4	13.5	17.7	19.7	17.3	20.5
Caudal de aire nominal	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Núm. de circuitos		1	1	1	1	1	1	1	1	1	1	1	2	2
N. compressori inverter		1	1	1	1	1	1	1	1	1	1	1	1	1
Núm. de compresores on/off		-	-	-	-	-	-	-	-	-	-	-	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	54		70		7	4	75	7	7	75	76	7	5
Dimensiones [LxHxA]	mm	900 x1875 x600	1010x20	00x890	12	70x2000x8	90	1760×20	00x890	2020x2	000×890	2	510x2000x8	90
Alimentación eléctrica	V/ph/Hz							400/3+N/5	0					

Datos de rendimiento de las versiones Downflow. | También disponibles con alimentación de 60 Hz. | Altura de los modelos Displacement 2125 mm para el tamaño 0131.

Los TRF DX son acondicionadores perimetrales de expansión directa con compresores Scroll on/off diseñados para ser instalados en entornos tecnológicos de dimensiones medianas/grandes tales como salas de servidores, laboratorios o aplicaciones que requieren un **control preciso de los parámetros termohigrométricos** y un **funcionamiento continuo las 24 horas del día**. El diseño interior y la selección de los componentes están destinados en primer lugar a la **eficiencia energética**, para **optimizar el consumo eléctrico** general del sistema, favoreciendo el PUE (Power Usage Effectiveness) del Data Center. Gracias a las diferentes con

Gama versátil y flexible

Gracias a las diferentes configuraciones frigoríficas disponibles, la gama **TRF DX** se adapta a numerosas aplicaciones en el sector del acondicionamiento de Data Centers.

Condensación por aire con condensador remoto

TRF W

Condensación por agua Dry Cooler

TRF Z

Condensación por agua de red (15 °C)

Condensación por agua y Free Cooling indirecto por agua

TRF D

Condensación por aire con condensador remoto y Dual Cooling

TRF K

Condensación por agua de torre evaporativa o Dry Cooler y Dual Cooling

Condensación por agua de red (15 °C) y Dual Cooling

Los TRF DX A son las unidades perimetrales condensadas por aire de la gama TRF y se utilizan ampliamente en la refrigeración de Data Centers. La solución condensada por aire ofrece un **sistema sencillo**, por la ausencia de otros circuitos auxiliares y bombas, una **gestión fácil**, ya que el circuito frigorífico se controla desde el armario, y una **instalación fácil** tanto de la unidad interna como del condensador remoto.

- Refrigerante R410A. También disponible con R513A y R134a
- Ventiladores EC
- Compresores Scroll on/off
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas, agua caliente y gas caliente (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7(opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (Δp control) (opcionales)
- Válvula de expansión electrónica (opcional)
- Kit de bajas temperaturas para un funcionamiento ideal en caso de instalación en entornos muy fríos (opcional)
- Kit de larga distancia para un funcionamiento ideal en caso de grandes distancias entre las unidades interna y externa (opcional)

Seguridad en la sala de servidores

Todos los modelos de la gama TRF DX A incorporan de serie baterías de intercambio térmico con tratamiento hidrófilo. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Eficiencia

La máxima fiabilidad y eficiencia de rendimiento de las unidades de HiRef está garantizada por la selección y el uso de componentes de la mejor calidad y por una disposición interna y externa inteligentemente diseñada.

Green

HiRef se empeña constantemente en la búsqueda de refrigerantes con un impacto ambiental cada vez menor. El uso de refrigerantes de clase A1 de ASHRAE, no tóxicos y no inflamables, es esencial en las aplicaciones Close Control. Las unidades TRF DX A están disponibles con refrigerantes R134a y R513A.

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes incluso con la unidad en funcionamiento. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

Dos circuitos

Hay disponibles versiones de dos circuitos incluso de bajas potencias. Esta solución ofrece la máxima redundancia de la unidad y garantiza la continuidad del funcionamiento, un suministro más preciso de la potencia frigorífica y una menor absorción en las cargas parciales del Data Center.

Condensadores remotos

Todas las unidades pueden combinarse con los condensadores remotos HiRef y es posible seleccionar diferentes combinaciones,diseñadas para satisfacer todas las demandas del sistema. Los condensadores remotos de gran tamaño son ideales para entornos más cálidos, donde es necesario mantener la temperatura de condensación bajo control; por el contrario, los condensadores compactos poseen dimensiones pequeñas y consumos limitados. Los condensadores, combinados con unidades de dos circuitos, están disponibles con un solo circuito frigorífico para obtener la máxima fiabilidad y redundancia del sistema, o con dos circuitos frigoríficos para reducir el espacio y los costes de instalación.

TRF DX A		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
									Aire	interi	or 24°	C - 50	% / Ai	re ext	erior :	55°C							
Potencia frigorífica	kW	23.9	26.4	29.5	33.5	36.5	39.9	44.3	48.6	52.4	38.7	43.4	48.6	53.7	61.2	64.2	69.7	78	81.6	89.5	98.2	122.1	134
SHR		1	1	1	1	1	1	0.95	1	1	1	1	1	1	0.92	1	1	0.92	1	0.99	0.93	0.93	0.88
EER		4	3.99	3.89	4.34	4.41	4.08	4.09	4.44	4.22	4.63	4.13	4.09	4.05	4.06	4.22	4.05	3.99	4.23	3.96	3.95	4.07	3.87
Potencia absorbida total	kW	7.2	7.9	8.8	9.5	10	11.5	12.6	13.6	15.1	11	13.2	14.5	15.9	17.7	19.2	21.1	23.5	25.2	28.5	30.7	35.9	40.5
									Aire	interi	or 30°	C - 35	% / Ai	re ext	erior	55°C							
Potencia frigorífica	kW	27.3	29.7	33.1	38.1	41.3	44.8	48.8	54.8	59	44.1	49.5	55.7	60.5	67.8	72.5	78.3	86.1	92.1	99.9	107.9	135.9	145.6
SHR		1	0.99	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.99
EER		4.39	4.37	4.25	4.83	4.94	4.45	4.4	4.89	4.62	5.11	4.5	4.51	4.44	4.39	4.64	4.51	4.31	4.64	4.3	4.26	4.46	4.11
Potencia absorbida total	kW	7.4	8	9	9.7	10.1	11.8	12.9	13.9	15.4	11.3	13.6	15	16.3	18.1	19.5	21.3	23.9	25.7	29.1	31.2	36.3	41.3
									Aire	interi	or 35°	C - 30	% / Ai	re ext	erior	35°C							
Potencia frigorífica	kW	29.8	32.7	36.3	/10	/ F 0	100			010			00.0	66.5	71.7	70.0	05.5		404.5	400.0	110.0	440.5	160.1
		20.0	JZ./	00.0	41.8	45.2	48.9	53.5	60.1	64.6	47.2	54	60.9	0.00	74.3	79.8	85.5	93.9	101.5	108.9	118.6	148.7	100.1
SHR	· · ·	1	1	1	41.8	45.2	48.9	53.5	60.1	1	47.2 0.85	1	1	1	14.5	19.8	85.5	93.9	101.5	108.9	118.6	148.7	1
	ivii	1 4.71	1 4.7	1 4.61	41.8 1 5.19	45.2 1 5.31	48.9 1 4.74	53.5 1 4.73	60.1 1 5.24	1 4.93		54 1 4.77	1 4.79	1 4.82	1 4.75	79.8 1 5.03	85.5 1 4.83	93.9 1 4.57	1 5.06	1 4.58	1 4.61	148.7 1 4.79	1 4.47
SHR	kW	1	1	1	1	1	1	1	1	1	0.85	1	1	1	1	1	1	1	1	1	1	1	1
SHR EER		1 4.71	1 4.7	1 4.61	1 5.19	1 5.31	1 4.74	1 4.73	1 5.24	1 4.93	0.85 5.36	1 4.77	1 4.79	1 4.82	1 4.75	1 5.03	1 4.83	1 4.57 24.5	1 5.06	1 4.58 29.6	1 4.61	1 4.79 36.9	1 4.47
SHR EER Potencia absorbida total	kW	1 4.71 7.6	1 4.7 8.2	1 4.61 9.1	1 5.19 9.8	1 5.31	1 4.74 12.1	1 4.73 13.1	1 5.24 14.1	1 4.93 15.8	0.85 5.36 11.5	1 4.77 14	1 4.79 15.4	1 4.82 16.4	1 4.75 18.3	1 5.03 19.8	1 4.83 21.7	1 4.57 24.5	1 5.06 25.9	1 4.58 29.6	1 4.61 31.6	1 4.79 36.9	1 4.47 41.7
SHR EER Potencia absorbida total Caudal de aire nominal	kW	1 4.71 7.6	1 4.7 8.2	1 4.61 9.1	1 5.19 9.8	1 5.31	1 4.74 12.1 15500	1 4.73 13.1	1 5.24 14.1 15500	1 4.93 15.8	0.85 5.36 11.5	1 4.77 14 15500	1 4.79 15.4	1 4.82 16.4 15500	1 4.75 18.3 15500	1 5.03 19.8 19900	1 4.83 21.7 19900	1 4.57 24.5 19900	1 5.06 25.9 25300	1 4.58 29.6 25300	1 4.61 31.6 25300	1 4.79 36.9 32100	1 4.47 41.7 32100
SHR EER Potencia absorbida total Caudal de aire nominal Núm. de circuitos	kW	1 4.71 7.6	1 4.7 8.2	1 4.61 9.1	1 5.19 9.8	1 5.31 10.3 11800 1 1	1 4.74 12.1 15500 2 2 71	1 4.73 13.1	1 5.24 14.1 15500 2 2 71	1 4.93 15.8	0.85 5.36 11.5	1 4.77 14 15500 2	1 4.79 15.4	1 4.82 16.4 15500 2	1 4.75 18.3 15500 2	1 5.03 19.8 19900 2	1 4.83 21.7 19900 2	1 4.57 24.5 19900 2	1 5.06 25.9 25300 2	1 4.58 29.6 25300 2	1 4.61 31.6 25300 2	1 4.79 36.9 32100 2 4	1 4.47 41.7 32100 2 4
SHR EER Potencia absorbida total Caudal de aire nominal Núm. de circuitos N. compressori	kW m³/h	1 4.71 7.6 8800 1 1 61	1 4.7 8.2 8800 1 1	1 4.61 9.1 8800 1 1 63	1 5.19 9.8 11800 1	1 5.31 10.3 11800 1 1 6 70	1 4.74 12.1 15500 2 2 71 1760 ×2000	1 4.73 13.1 11800 1 1	1 5.24 14.1 15500 2 2 71 1760 x2000	1 4.93 15.8 11800 1 1 67 1270 ×2000	0.85 5.36 11.5	1 4.77 14 15500 2 2	1 4.79 15.4 15500 1	1 4.82 16.4 15500 2 2	1 4.75 18.3 15500 2	1 5.03 19.8 19900 2 2	1 4.83 21.7 19900 2 2	1 4.57 24.5 19900 2 2	1 5.06 25.9 25300 2 2	1 4.58 29.6 25300 2 2	1 4.61 31.6 25300 2 2	1 4.79 36.9 32100 2 4	1 4.47 41.7 32100 2 4 6 60 000

Datos de rendimiento de las versiones Downflow con refrigerante R410A combinadas con condensadores remotos HiRef estándares. | También disponibles con alimentación de 60 Hz. | Altura modelos Displacement 2250 mm.

TRF DX W son armarios perimetrales condensados por agua que utilizan agua de Dry Cooler. Los TRF de esta serie son unidades monobloc en cuyo interior se concentra **todo el circuito frigorífico**. La condensación se produce gracias a un **intercambiador de placas con soldadura fuerte de acero inoxidable AISI 304**.

TRF DX Z son armarios perimetrales condensados por agua que utilizan agua de red o subterránea a baja temperatura (15 °C). Los TRF de esta serie son unidades monobloc en cuyo interior se concentra **todo el circuito frigorífico**. La condensación se produce gracias a un **intercambiador de placas con soldadura fuerte de acero inoxidable AISI 304**.

Mantenimiento ordinario más

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes incluso con la unidad en funcionamiento. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

- Refrigerante R410A. También disponible con R513A y R134a
- Ventiladores EC
- Compresores Scroll on/off
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas, agua caliente y gas caliente (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Kit de bajas temperaturas para un funcionamiento ideal en caso de instalación en entornos muy fríos (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (Δp control) (opcionales)
- Válvula de expansión electrónica (opcional)

La máxima fiabilidad y eficiencia de rendimiento de las unidades de HiRef está garantizada **por la selección y el uso** de componentes de la mejor calidad y por una disposición interna y externa inteligentemente diseñada.

Green

HiRef se empeña constantemente en la búsqueda de refrigerantes con un impacto am**biental cada vez menor.** El uso de refrigerantes de clase A1 de ASHRAE, no tóxicos y no inflamables, es esencial en las aplicaciones Close Control. Las unidades TRF DX W están disponibles con refrigerantes R134a y R513A.

Seguridad en la sala de servidores

Todos los modelos de la gama TRF DX W incorporan de serie baterías de intercambio térmico con tratamiento hidrófilo. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el

interior y exterior de la unidad.

Dos circuitos

Hay disponibles versiones de dos circuitos incluso de bajas potencias. Esta solución ofrece la máxima redundancia de la unidad y garantiza la continuidad del funcionamiento, un suministro más preciso de la potencia frigorífica y una menor absorción en las cargas parciales del Data Center.

CONFIGURACIONES DEL FLUJO DE AIRE

Πie	nlar	eme	ant .
DIO	piac	CITIC	2116

															-	•							
TRF DX W		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
									Aire	interi	or 24°	°C - 50	% / A	gua 41	0°C - 4	5°C							
Potencia frigorífica	kW	24.4	27.4	30.3	34.9	36.8	41.2	45.2	49.8	54	39.3	45.3	49.5	56.3	62.8	66.6	72.3	80.4	83.9	93.3	100.6	123.5	136.7
SHR		1	1	1	1	1	0.99	0.93	1	1	0.99	1	0.99	0.99	0.92	0.99	0.99	0.89	1	0.96	0.9	0.95	0.87
EER		4.31	4.49	4.17	4.87	4.57	4.51	4.33	4.79	4.6	4.89	4.72	4.36	4.63	4.36	4.7	4.53	4.38	4.58	4.46	4.26	4.19	4.1
Potencia absorbida total	kW	6.9	7.3	8.5	8.9	9.8	10.9	12.2	13.1	14.4	10.7	12.2	14	14.8	17.1	18.1	19.9	22.3	24.2	26.8	29.5	35.4	39.2
			Aire interior 30°C - 35% / Agua 40°C - 45°C																				
Potencia frigorífica	kW	28.4	31.4	34.2	40	42.1	46.8	50.2	56.9	61.2	45.3	52.5	57.4	63.9	70.1	76.3	81.5	89.2	95.6	105.1	111.7	138.4	150.3
SHR		1	1	1	1	0.99	1	1	1	1	0.98	1	0.98	1	1	1	1	1	1	1	1	1	1
EER		5	5.22	4.74	5.69	5.32	5.16	4.84	5.52	5.23	5.64	5.46	5.05	5.32	4.89	5.46	5.18	4.88	5.27	5.06	4.75	4.71	4.54
Potencia absorbida total	kW	6.9	7.3	8.4	8.8	9.7	10.8	12.1	12.9	14.3	10.7	12.3	14	14.7	17	17.9	19.7	22.2	24	26.6	29.4	35.2	39
									Aire	interi	or 35°	°C - 30	% / A	gua 41	0°C - 4	5°C							
Potencia frigorífica	kW	31.3	34.8	37.8	44.5	46.8	51.7	55.4	63.2	68	49.9	57.9	63.6	70.6	77.6	84.3	90.4	98.8	106.3	116	122.6	153.1	165.1
SHR		1	1	1	0.99	1	1	1	1	1	0.95	1	1	1	1	1	1	1	1	1	1	1	0.99
EER		5.53	5.91	5.31	6.47	6.05	5.79	5.4	6.23	5.88	6.22	6.03	5.59	5.99	5.47	6.15	5.86	5.45	5.95	5.65	5.24	5.27	5.04
Potencia absorbida total	kW	6.9	7.1	8.3	8.6	9.5	10.7	12	12.8	14.2	10.7	12.3	14	14.4	16.8	17.6	19.4	22.1	23.7	26.4	29.2	34.9	38.6
Caudal de aire nominal	m³/h	8800	8800	8800	11800	11800	15500	11800	15500	11800	15500	15500	15500	15500	15500	19900	19900	19900	25300	25300	25300	32100	3210
Núm. de circuitos		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	2	2
N. compressori		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	4	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	61	62	63	6	6	71	67	71	67			71				66			69		6	66
Dimensiones [LxHxA]	mm	1010	x2000	x890	x21	70 000 90	1760 x2000 x890	1270 x2000 x890	1760 x2000 x890			1760	x2000	x890		2020)x2000	x890	2510	x2000	x 890	x20	60 000 160
Alimentación eléctrica	V/ph/Hz						200	200	200	200		400/3	+N/50										

					x8	90	x890	x890	x890	x890												х9	60
Alimentación eléctrica	V/ph/Hz											400/3	+N/50										
TRF DX Z		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
									Aire	inter	ior 24	°C - 50	% / A	gua 15	5°C - 3	0°C							
Potencia frigorífica	kW	28	31.1	34.6	39.7	42.2	47.2	52	56.8	61.7	45.2	51.8	57.4	63.8	71.6	76	82	91.3	95.7	108	116	143.1	158.3
SHR		0.97	0.93	0.92	1	0.94	0.93	0.86	0.96	0.94	0.98	1	0.96	0.91	0.86	0.95	0.92	0.84	0.92	0.9	0.85	0.87	0.82
EER		6.77	7.59	6.91	8.36	7.83	7.68	7.31	8.05	7.52	7.76	7.41	6.93	7.71	7.07	7.84	7.49	7.1	7.8	7.6	7.04	7.18	7.04
Potencia absorbida total	kW	5.4	5.3	6.2	6.5	7.2	7.9	8.9	9.7	10.8	8.5	9.6	10.9	10.9	12.8	13.6	14.9	16.8	18.1	20.1	22.4	25.8	28.4
									Aire	inter	ior 30	°C - 35	% / 4	gua 19	5°C - 3	0°C							
Potencia frigorífica	kW	32.1	35.3	38.3	45.2	47.3	52.3	56.6	64.2	68.9	52	59.8	65	71.3	77.7	84.9	90.3	99	106.9	117.9	125.1	155.2	169.3
SHR		0.99	1	1	1	0.98	1	1	1	1	0.99	1	1	1	1	1	1	1	1	1	1	1	0.97
EER		7.78	9.14	7.92	10.24	9.25	8.88	8.14	9.5	8.64	8.97	8.55	7.86	9.07	7.9	9.22	8.55	7.89	9.21	8.52	7.72	8	7.69
Potencia absorbida total	kW	5.4	5.1	6.1	6.2	6.9	7.7	8.7	9.4	10.6	8.5	9.7	10.9	10.5	12.5	13.1	14.5	16.5	17.5	19.7	22.1	25.3	27.9
									Aire	inter	ior 35	°C - 30	% / A	gua 19	5°C - 3	0°C							
Potencia frigorífica	kW	35.5	38.6	42	49.9	52.1	57.4	62.1	70.3	75.6	57.4	65.9	72	78.3	85.3	93.7	99.8	108.8	118.1	130.1	137.3	170.3	184.7
SHR		1	0.98	1	1	0.99	1	1	0.98	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		8.59	10.7	9.12	12.24	10.88	10.35	9.25	10.88	9.8	9.92	9.39	8.7	10.56	9.05	10.87	9.96	9.1	10.93	9.81	8.71	9.19	8.68
Potencia absorbida total	kW	5.4	4.8	5.8	5.8	6.6	7.3	8.5	9.1	10.4	8.4	9.7	10.9	10.1	12.1	12.6	14	15.9	16.7	19.1	21.6	24.4	27.2
Caudal de aire nominal	m³/h	8800	8800	8800	11800	11800	15500	11800	15500	11800	15500	15500	15500	15500	15500	19900	19900	19900	25300	25300	25300	32100	32100
Núm. de circuitos		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	2	2
N. compressori		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	4	4
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	61	62	63	6	6	71	67	71	67			71				66			69		6	6
Dimensiones [LxHxA]	mm	1010	x2000	x890	12 x2(x8	000	1760 x2000 x890	1270 x2000 x890	1760 x2000 x890			1760	x2000	x890		2020	x2000	x 890	2510	x2000	x 890	310 x 20 x 9	000
Alimentación eléctrica	V/ph/Hz											400/3	+N/50										

Los TRF DX F son armarios perimetrales condensados por agua que aprovechan **el efecto de Free Cooling indirecto por agua**. La serie F utiliza agua de Dry Cooler tanto como fuente frigorífica para el Free-Cooling, como fluido de intercambio térmico para la condensación del circuito frigorífico. Los TRF DX F son unidades monobloc en las que se concentra **todo el circuito frigorífico**. La condensación se produce gracias a un **intercambiador de placas con soldadura fuerte de acero inoxidable AISI 304**.

Máximo ahorro de energía

Cuando el aire exterior tiene una temperatura inferior a la del aire caliente del interior de la sala del CPD, el agua fría producida por el dry cooler alimenta directamente la batería de intercambio térmico, que logra suministrar una parte o la totalidad de la capacidad frigorífica necesaria. Antes de volver al dry cooler, el agua se reutiliza dentro del intercambiador de placas que sirve al compresor. Todo el proceso está regulado por una válvula de 3 vías controlada directamente por el software de HiRef, que maximiza el efecto de Free-Cooling y controla el circuito frigorífico. De esta manera se reduce significativamente el trabajo del compresor hasta que se apaga en condiciones de Free Cooling total, con una reducción importante del PUE del sistema.

Seguridad en la sala de servidores

Todos los modelos de la gama TRF DX F incorporan de serie baterías de intercambio térmico con tratamiento hidrófilo. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

- Refrigerante R410A. También disponible con R513A y R134a
- Ventiladores EC
- Compresores Scroll on/off
- Control avanzado de estándar
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (Δp control) (opcionales)
- Válvula de expansión electrónica (opcional)

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes incluso con la unidad en funcionamiento. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

Eficiencia

La máxima fiabilidad y eficiencia de rendimiento de las unidades de HiRef está garantizada por la selección y el uso de componentes de la mejor calidad y por una disposición interna y externa inteligentemente diseñada.

Green

HiRef se empeña constantemente en la búsqueda de refrigerantes con un impacto ambiental cada vez menor. El uso de refrigerantes de clase A1 de ASHRAE, no tóxicos y no inflamables, es esencial en las aplicaciones Close Control. Las unidades TRF DX F están disponibles con refrigerantes R134a y R513A.


Dos circuitos

Hay disponibles versiones de dos circuitos incluso de bajas potencias. Esta solución ofrece la máxima redundancia de la unidad y garantiza la continuidad del funcionamiento, un suministro más preciso de la potencia frigorífica y una menor absorción en las cargas parciales del Data Center.

CONFIGURACIONES DEL FLUJO DE AIRE

TRF DX F		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
					A	ire int	erior 2	24°C -	50 % l	H.R. /	Agua 4	+0°C -	45°C	/ Agua	a Free	-Cooli	ng 7°C	: / Glid	ol 30	%			
Potencia frigorífica	kW	22.9	25.7	28.9	32	34.9	39.1	42.9	46.2	50.8	37.1	41.8	45.8	52.5	57.6	62.3	68.7	75.9	80.1	89.6	96.7	115.4	128.4
SHR		1	0.95	0.89	0.97	1	0.89	0.87	1	0.96	1	1	1	0.94	0.88	0.94	0.91	0.85	0.98	0.88	0.87	0.89	0.85
EER		4.01	4.16	3.95	4.42	4.28	4.24	4.08	4.39	4.29	4.58	4.33	4	4.28	3.96	4.35	4.25	4.12	4.33	4.25	4.07	3.88	3.81
Potencia frigorífica free-cooling	kW	24.6	26.9	28	33.3	34.8	37.8	40.8	52.1	52.1	44.9	46.2	52.1	54.2	58.5	62.5	67.6	70.2	85.7	89.1	92.5	124.5	133.3
SHR free-cooling		0.9	0.86	0.84	0.9	0.88	0.84	0.81	0.86	0.86	1	0.91	0.86	0.84	0.81	0.86	0.82	0.81	0.84	0.82	0.81	0.79	0.77
Potencia absorbida total	kW	6.8	7.3	8.4	8.8	9.7	10.7	12	13.2	14.5	10.8	12.2	14.1	15	17.2	17.6	19.4	21.7	23.8	26.4	29.1	35.2	39.2
					Ai	re int	erior 3	60°C -	35% I	I.R. / /	Agua 4	0°C -	47°C /	Agua	Free-	Coolir	12°	C / Gli	col 30	%			
Potencia frigorífica	kW	26	28.4	31.4	36	38.7	42.7	46.1	51.5	55.9	42.5	47.9	51.8	57.7	62.1	69.1	74.5	81.2	88.3	97.7	103.3	125.2	136.3
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4.38	4.45	4.14	4.83	4.61	4.47	4.23	4.75	4.57	5.06	4.76	4.35	4.55	4.12	4.68	4.47	4.24	4.62	4.48	4.19	4.07	3.93
Potencia frigorífica free-cooling	kW	24	24.7	25.5	32.4	33.4	34.4	35.3	47.9	49.3	43.8	45.1	49.3	49.3	50.7	57.5	60.8	62.5	77.9	80.1	82.3	109.6	109.6
SHR free-cooling		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	7.1	7.5	8.7	9	9.9	11.1	12.4	13.5	14.9	11.1	12.6	14.6	15.4	17.7	18	19.9	22.4	24.4	27.1	29.9	36.3	40.2
					Ai	re int	erior 3	5°C -	30% I	I.R. / /	lgua 4	0°C -	47°C /	Agua	Free-	Coolir	17°	C / Gli	col 30	%			
Potencia frigorífica	kW	28.8	31.4	34.5	39.9	42.9	47	50.7	57.2	61.8	47	53.1	57.6	63.9	68.9	76.7	82.6	90.1	98.4	108.1	114.3	137.8	149.9
SHR		1	1	1	0.98	1	0.99	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4.85	4.98	4.59	5.41	5.17	4.94	4.67	5.34	5.07	5.61	5.29	4.83	5.1	4.61	5.23	5.01	4.71	5.18	4.97	4.65	4.49	4.34
Potencia frigorífica free-cooling	kW	25.6	26.3	26.4	34.5	34.5	35.7	36.6	50.9	50.9	46.9	47.9	50.9	50.9	53.9	61.1	62.7	63	80.4	82.6	85.2	112.7	113.3
SHR free-cooling		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	7.1	7.4	8.7	8.9	9.8	11	12.4	13.4	14.9	11.1	12.6	14.6	15.2	17.6	17.9	19.8	22.4	24.3	27	29.9	36.2	40
Caudal de aire nominal	m³/h	8000	8000	8000	10800	10800	15500	10800	15000	10800	15500	15500	15500	15500	15500	18600	18600	18600	24500	24500	24500	31800	31800
Núm. de circuitos		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	2	2
N. compressori		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	4	4
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	61	6	2	6	5	71	65	71	65		71					65			69		66	
Dimensiones [LxHxA]	mm	1010	x2000	x890	1270 x2000 x890		1760 x2000 x890	1270 x2000 x890	1760 x2000 x890	1270 x2000 x890		1760x2000x890			2020x2000x890			2510x2000x890			x21	60 000 160	
Alimentación eléctrica	V/ph/Hz											400/3	+N/50										

Datos de rendimiento de las versiones Downflow con refrigerante R410A. | También disponibles con alimentación de 60 Hz. | Altura modelos Displacement 2250 mm.

TRF DX D son unidades Dual Cooling. Combinan la tradicional batería evaporativa del circuito frigorífico con el efecto refrigerante del agua enfriada procedente de una unidad externa, como una enfriadora. El uso de una doble fuente permite garantizar continuidad al sistema v elegir la meior solución de funcionamiento en cada ocasión, para minimizar los gastos de explotación.

Condensadores remotos

Todas las unidades TRF DX D pueden combinarse con los condensadores remotos HiRef y **es po**sible seleccionar diferentes combinaciones, diseñadas para satisfacer todas las demandas del sistema. Los condensadores remotos de gran tamaño son ideales para entornos más cálidos, donde es necesario mantener la temperatura de condensación bajo control; por el contrario, los condensadores compactos poseen dimensiones pequeñas y consumos limitados. Los condensadores, combinados con unidades de dos circuitos, están disponibles con un solo circuito frigorífico para obtener la máxima fiabilidad y redundancia del sistema, o con dos circuitos frigoríficos para reducir el espacio y los costes de instalación.

- Refrigerante R410A. También disponible con R513A y R134a
- Ventiladores EC
- Compresores Scroll on/off
- Control avanzado de estándar
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (Δp control)(opcionales)
- Válvula de expansión electrónica (opcional)
- Kit de bajas temperaturas para un funcionamiento ideal en caso de instalación en entornos muy fríos (opcional)
- Kit de larga distancia para un funcionamiento ideal en caso de grandes distancias entre las unidades interna y externa (opcional, disponible solo para la versión D)

CONFIGURACIONES DEL FLUJO DE AIRE

Seguridad en la sala de servidores

Todos los modelos de la gama TRF DX D incorporan de serie baterías de intercambio térmico con tratamiento hidrófilo. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Eficiencia

La máxima fiabilidad y eficiencia de rendimiento de las unidades de HiRef está garantizada por la selección y el uso de componentes de la mejor calidad y por una disposición interna y externa inteligentemente diseñada.

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes incluso con la unidad en funcionamiento. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

Máxima flexibilidad

Las unidades Dual Cooling permiten combinar la fiabilidad de una fuente doble con la sencillez de funcionamiento de los armarios HiRef. El control incorporado en la máquina permite seleccionar la fuente según diferentes lógicas, a elección del cliente.

Green

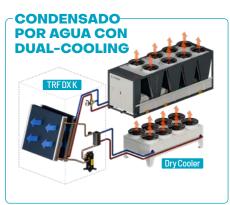
HiRef se empeña constantemente en la búsqueda de refrigerantes con un impacto ambiental cada vez menor. El uso de refrigerantes de clase Al de ASHRAE, no tóxicos y no inflamables, es esencial en las aplicaciones Close Control. Las unidades TRF DX D están disponibles con refrigerantes R134a y R513A.

Dos circuitos

Hay disponibles versiones de dos circuitos incluso de bajas potencias. Esta solución ofrece la **máxima redundancia de la unidad y garantiza la continuidad del funcionamiento, un suministro más preciso de la potencia frigorífica** y una menor absorción en las cargas parciales del Data Center.

TRF DX D		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
						A	ire int	erior 2	24°C -	50 % /	Aire	exteri	or 35°	C / Ag	ua rei	rigera	ada 7°	C - 12°	C				
Potencia frigorífica	kW	22.6	25	28.6	31.4	34.8	38.3	42.7	45.4	49.7	36.7	40.6	45.3	50.4	57	61.1	67.2	74.6	78.6	87.4	95.5	115.6	126.5
SHR		1	0.97	0.91	1	1	0.9	0.89	1	0.95	1	1	1	0.92	0.9	0.97	0.91	0.86	0.96	0.92	0.87	0.89	0.83
EER		3.84	3.83	3.8	4.14	4.24	4.01	4	4.19	4.05	4.44	3.91	3.86	3.83	3.81	4.06	3.98	3.9	4.14	3.93	3.93	3.89	3.68
Potencia frigorífica acqua refrig.	kW	29.1	29.1	29.1	40.8	40.8	40.8	40.8	58.5	58.5	58.5	58.7	58.5	58.5	58.5	70.2	70.2	70.2	92.5	92.5	92.5	128.9	128.9
SHR acqua refrigerata		0.82	0.82	0.82	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.8	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.78	0.78
Potencia absorbida total	kW	7	7.7	8.6	9.1	9.7	11.1	12.2	13.5	15	11	12.9	14.4	15.8	17.6	18.3	20.1	22.4	24.3	27.5	29.6	35.2	39.9
						Ai	re inte	erior 3	0°C -	35 % /	Aire e	exteri	or 35°	C / Ag	ua ref	rigera	da 10°	°C - 15	°C				
Potencia frigorífica	kW	25.8	27.9	31.1	35.5	38.8	42.2	46.3	50.8	55	42.2	46.4	51.4	56.2	62	68	73.6	81.1	87.8	96	103.4	125.8	136
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4.24	4.18	4.06	4.58	4.67	4.29	4.27	4.57	4.34	4.94	4.26	4.23	4.17	4.07	4.45	4.29	4.15	4.51	4.23	4.16	4.16	3.91
Potencia frigorífica acqua refrig.	kW	31.4	31.4	31.4	42.3	42.3	42.3	42.3	60.8	60.8	60.8	60.3	60.8	60.8	60.8	72.9	72.9	72.9	96.1	96.1	96.1	127.8	127.8
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	7.2	7.8	8.8	9.3	9.8	11.3	12.4	13.8	15.4	11.2	13.4	14.8	16.1	17.9	18.5	20.4	22.8	24.8	28	30.1	35.8	40.3
						Ai	re inte	erior 3	5°C -	30% /	Aire e	xterio	or 35°(C / Ag	ua ref	rigera	da 15°	C - 20	°C				
Potencia frigorífica	kW	28.3	30.3	34.1	39	42.6	46.2	50.5	55.9	60.4	46.2	50.7	56.4	61.4	67.4	74.7	81	88.7	96.5	104.8	112.9	137.5	148.6
SHR		1	1	1	1	1	1	1	1	1	1	0.99	1	1	1	1	1	1	1	1	1	1	1
EER		4.56	4.42	4.39	4.94	5.09	4.59	4.58	4.93	4.7	5.27	4.56	4.49	4.47	4.33	4.76	4.67	4.44	4.88	4.48	4.46	4.47	4.21
Potencia frigorífica acqua refrig.	kW	31.6	31.6	31.6	42.7	42.7	42.7	42.7	61.2	61.2	61.2	60.7	61.2	61.2	61.2	73.5	73.5	73.5	96.8	96.8	96.8	128.7	128.7
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	7.3	8	8.9	9.4	9.9	11.6	12.5	14	15.6	11.4	13.7	15.3	16.4	18.3	19	20.6	23.2	25.1	28.7	30.6	36.2	40.8
Caudal de aire nominal	m³/h	8000	8000	8000	10800	10800	15500	10800	15000	10800	15500	15500	15500	15500	15500	18600	18600	18600	24500	24500	24500	31800	31800
Núm. de circuitos		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	2	2
N. compressori		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	4	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	61	6	2	6	5	71	65	71	65		71				65				69		66	
Dimensiones [LxHxA]	mm	1010	x2000	x890	1270 x2000 x890		1760 x2000 x890	1270 x2000 x890		1270 x2000 x890		1760x2000x890					x2000	x890	2510)x2000	x2	160 000 360	
Alimentación eléctrica	V/ph/Hz											400/3	+N/50										

Datos de rendimiento de las versiones Downflow con refrigerante R410A combinadas con condensadores remotos HiRef estándares. | También disponibles con alimentación de 60 Hz. | Altura modelos Displacement 2250 mm.


Plataforma TRF Evolution

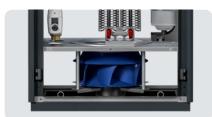
TRF DX D/K/Q

TRF DX K		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
						A	ire int	erior	24°C -	50%	/ Agua	40°C	- 45°	C / Ag	ua ref	rigera	ada 7°	C - 12°	C				
Potencia frigorífica	kW	23	25.8	29.1	32.2	34.9	39.2	43.1	46.4	50.7	37.2	42	45.8	52.3	57.9	62.6	68.4	76.2	79.9	90.1	97.2	116.1	128.1
SHR		1	0.93	0.9	0.97	0.96	0.9	0.87	1	0.92	1	1	0.98	0.9	0.88	0.94	0.88	0.86	0.95	0.89	0.88	0.9	0.82
EER		4.05	4.2	4	4.48	4.3	4.29	4.14	4.45	4.31	4.63	4.38	4.04	4.29	4.01	4.4	4.26	4.16	4.36	4.3	4.12	3.93	3.83
Potencia frigorífica acqua refrig.	kW	29.1	29.1	29.1	40.8	40.8	40.8	40.8	58.5	58.5	58.5	58.7	58.5	58.5	58.5	70.2	70.2	70.2	92.5	92.5	92.5	128.9	128.9
SHR acqua refrigerata		0.82	0.82	0.82	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.8	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.78	0.78
Potencia absorbida total	kW	6.8	7.3	8.4	8.7	9.6	10.7	11.9	13.1	14.5	10.7	12.2	14	14.9	17.1	17.5	19.3	21.6	23.6	26.2	28.9	35	38.9
						A	ire int	erior 3	50°C -	35 % /	Agua	40°C	- 45°(: / Ag	ua refi	rigera	da 10°	'C - 15'	°C				
Potencia frigorífica	kW	26.5	29.1	31.9	36.6	39.3	43.3	47.1	52.6	57.1	43.2	48.7	52.8	58.6	63.1	70.2	76.1	82.9	90.1	99.2	105.5	127.2	138.2
SHR		1	1	1	0.98	1	0.99	1	1	1	1	1	1	1	1	1	1	1	1	0.99	1	1	0.99
EER		4.67	4.78	4.4	5.13	4.89	4.73	4.52	5.09	4.87	5.37	5.07	4.64	4.85	4.38	4.96	4.78	4.52	4.92	4.74	4.47	4.31	4.15
Potencia frigorífica acqua refrig.	kW	31.4	31.4	31.4	42.3	42.3	42.3	42.3	60.8	60.8	60.8	60.3	60.8	60.8	60.8	72.9	72.9	72.9	96.1	96.1	96.1	127.8	127.8
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	6.8	7.2	8.4	8.6	9.6	10.7	12	13	14.4	10.7	12.2	14.1	14.8	17.1	17.4	19.2	21.6	23.6	26.2	28.9	35	38.8
						Ai	re inte	erior 3	5°C -	30 % /	Agua	40°C	- 45°(/ Agi	ıa refi	igera	da 15°	C - 20	°C				
Potencia frigorífica	kW	29.4	32.1	35.4	40.8	43.4	47.6	51.5	58.1	63.1	47.9	54	58.8	64.9	70	77.8	83.8	91.3	99.7	109.8	116.1	141.1	152
SHR		1	1	1	1	1	0.98	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		5.19	5.35	4.92	5.8	5.48	5.24	4.96	5.67	5.42	5.97	5.62	5.17	5.44	4.9	5.56	5.32	4.99	5.5	5.29	4.94	4.82	4.6
Potencia frigorífica acqua refrig.	kW	31.6	31.6	31.6	42.7	42.7	42.7	42.7	61.2	61.2	61.2	60.7	61.2	61.2	61.2	73.5	73.5	73.5	96.8	96.8	96.8	128.7	128.7
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	6.8	7.1	8.3	8.6	9.4	10.6	11.9	12.9	14.3	10.7	12.2	14.1	14.6	17	17.3	19	21.6	23.4	26.1	28.8	34.8	38.6
Caudal de aire nominal	m³/h	8000	8000	8000	10800	10800	15500	10800	15000	10800	15500	15500	15500	15500	15500	18600	18600	18600	24500	24500	24500	31800	31800
Núm. de circuitos		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	2	2
N. compressori		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	4	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	61	6	2	6	5	71	65	71	65			71				65			69		66	
Dimensiones [LxHxA]	mm	1010	x2000	x890	1270 x2000		1760 x2000				1760x2000x890					2020)x2000	x 890	2510	x2000	3160 x2000		
Alimentación eléctrica	V/ph/Hz				x8	90	x890	x 890	x890	x890		400/3	. NI/EO									ΧÔ	160
Annichidelini electrica	v/ hii/ UZ	1										400/0	TIN/ DU										

Datos de rendimiento de las versiones Downflow con refrigerante R410A combinadas con condensadores remotos HiRef estándares. | También disponibles con alimentación de 60 Hz. | Altura modelos Displacement 2250 mm.

TRF DX Q		0241	UZDI	UZÐI	บออเ	USBI	บอยเ	U44I	U481	0521	U382	U43Z	U492	U532	U6U2	Ub32	0682	U/62	UVUZ	U8/2	U962	1204	1304
						I	lire in	terior	24°C -	- 50%	/ Agu	a 15°C	- 30°(: / Agi	ua refi	rigera	da 7°() - 12°	C				
Potencia frigorífica	kW	26.7	29.6	33.2	36.8	39.7	44.2	49.1	53.3	58.3	42.9	48.8	53.5	59.8	65.9	71.1	77.4	86	90.9	103.5	110.4	134.6	147.7
SHR		0.93	0.88	0.83	0.93	0.91	0.82	0.81	0.93	0.88	1	0.96	0.92	0.85	0.82	0.9	0.84	0.82	0.88	0.84	0.81	0.85	0.78
EER		6.46	7.08	6.54	7.5	7.15	6.97	6.76	7.49	7.07	7.38	6.99	6.47	7.14	6.45	7.13	6.89	6.56	7.2	7.14	6.61	6.66	6.47
Potencia frigorífica acqua refrig.	kW	29.1	29.1	29.1	40.8	40.8	40.8	40.8	58.5	58.5	58.5	58.7	58.5	58.5	58.5	70.2	70.2	70.2	92.5	92.5	92.5	128.9	128.9
SHR acqua refrigerata		0.82	0.82	0.82	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.8	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.78	0.78
Potencia absorbida total	kW	5.3	5.3	6.2	6.4	7.1	7.9	8.8	9.8	10.9	8.5	9.5	11	11.1	12.9	13.2	14.5	16.4	17.9	19.8	22	25.7	28.3
		Aire interior 30°C - 35% / Agua 15°C - 30°C / Agua refrigerada 10°C - 15°C													C								
Potencia frigorífica	kW	29.7	32.3	35.6	41.2	43.7	48	52.5	59	63.8	49.3	55.2	59.7	65.4	70.5	78.3	83.3	91.3	100.2	110.6	118.1	144	156.8
SHR		1	1	1	1	1	1	0.99	1	1	1	1	1	1	0.99	1	1	0.96	1	0.98	0.98	1	0.93
EER		7.2	8.01	7.13	8.75	8.11	7.74	7.31	8.56	7.9	8.49	7.88	7.21	8.07	7.02	8.08	7.55	7.05	8.23	7.75	7.15	7.27	6.97
Potencia frigorífica acqua refrig.	kW	31.4	31.4	31.4	42.3	42.3	42.3	42.3	60.8	60.8	60.8	60.3	60.8	60.8	60.8	72.9	72.9	72.9	96.1	96.1	96.1	127.8	127.8
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	5.3	5.2	6.1	6.2	6.9	7.7	8.7	9.6	10.8	8.5	9.6	11	10.8	12.7	12.9	14.3	16.2	17.5	19.6	21.8	25.3	28
						A	ire int	erior 3	35°C -	30 % /	Agua	15°C -	- 30°C	/ Agu	a refr	igerac	la 15° (C - 20°	C C				
Potencia frigorífica	kW	32.9	35.5	39.1	45.2	48	52.4	56.9	65.1	70	54.4	61.1	66	71.9	77	85.5	91.7	99.8	110	122.4	128	157.1	170.2
SHR		1	1	1	1	1	0.99	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.98
EER		7.96	9.26	8.08	10.1	9.28	8.74	8.07	9.86	8.88	9.4	8.72	7.97	9.32	7.9	9.2	8.59	7.89	9.47	8.85	7.87	8.19	7.78
Potencia frigorífica acqua refrig.	kW	31.6	31.6	31.6	42.7	42.7	42.7	42.7	61.2	61.2	61.2	60.7	61.2	61.2	61.2	73.5	73.5	73.5	96.8	96.8	96.8	128.7	128.7
SHR acqua refrigerata		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potencia absorbida total	kW	5.3	5	6	6	6.7	7.5	8.6	9.3	10.6	8.5	9.6	11	10.4	12.4	12.6	13.9	15.9	16.9	19.1	21.6	24.7	27.4
Caudal de aire nominal	m³/h	8000	8000	8000	10800	10800	15500	10800	15000	10800	15500	15500	15500	15500	15500	18600	18600	18600	24500	24500	24500	31800	31800
Núm. de circuitos		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	2	2
N. compressori		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	4	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	61	6	2	_	5	71	65	71	65			71				65			69		_	6
Dimensiones [LxHxA]	mm	1010	1010×2000×890			70 000 90	1760 x2000 x890		1760 x2000 x890	1270 x2000 x890		1760×2000×890					x2000	x890	2510x2000x890			31 x 2(x 9	

 $Datos \ de \ rendimiento \ de \ las \ versiones \ Downflow \ con \ refrigerante \ R410A. \ | \ También \ disponibles \ con \ a limentación \ de \ 60 \ Hz. \ | \ Altura \ modelos \ Displacement \ 2250 \ mm.$



JREF CW Radiales es la gama de acondicionadores perimetrales por aqua enfriada con ventiladores radiales EC para entornos tecnológicos pequeños como salas de servidores, laboratorios o aplicaciones en las que se requiere un control preciso de los parámetros termohigrométricos y un funcionamiento continuo las 24 horas del día. Un minucioso análisis fluidodinámico CFD ha permitido diseñar con máxima precisión todos los detalles de construcción para minimizar las pérdidas de carga en el flujo de aire y el consumo de energía de los ventiladores. Las secciones de paso de aire se han ampliado para que la instalación y el mantenimiento sean más rápidos y sencillos.

Sección filtrante ampliada

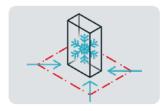
Los filtros de aire, colocados en toda la superficie de la batería, maximizan la sección filtrante y minimizan las pérdidas de carga de aire de la unidad.

Regulación de la ventilación

En función de la lógica de distribución del aire en la sala de servidores, es posible elegir el sistema de ventilación más adecuado montado en la máquina, garantizando un caudal de aire constante (airflow control) o una sobrepresión disponible constante (\Delta p control); esta última está indicada especialmente en el caso de utilizar un suelo sobreelevado.

- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas, batería adicional de agua caliente o ambos (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Modulación de la velocidad de los ventiladores de acuerdo con la carga térmica (∆T constante)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (Δp control)(opcionales)
- Función de lectura instantánea del caudal de agua, de las temperaturas de entrada y salida del agua, o de la capacidad frigorífica suministrada (opcionales)

CONFIGURACIONES DEL FLUJO DE AIRE



Displacement

Alta densidad de potencia

El footprint reducido y el alto rendimiento permiten una alta densidad de potencia frigorífica. De esta manera es posible minimizar el espacio dedicado a las unidades en la sala y aprovechar al máximo el espacio disponible.

Doble circuito

Las unidades por agua enfriada también están disponibles con doble circuito. En esta versión, la alimentación se realiza a través de dos circuitos hidráulicos diferentes que ofrecen la máxima continuidad de funcionamiento en caso de fallo de uno de ellos. Cada circuito está equipado con una válvula de regulación.

Ventilación EC

Los ventiladores PLUG EC, de serie en toda la gama, se pueden regular mediante diferentes lógicas: caudal, sobrepresión ΔP y ΔT constantes. Su regulación precisa permite un uso eficiente de la energía eléctrica que se consume en la ventilación y la consiguiente reducción del PUE **del sistema.** La regulación de la velocidad con rango ampliado se realiza mediante el protocolo Modbus. Por último, la función «velocidad de emergencia» permite que **el** ventilador funcione incluso en caso de fallo de funcionamiento del microprocesador.

Batería de aletas con tratamiento hidrofílico

Todos los modelos de la gama JREF CW Radiales incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida y la salida de los condensados en el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Numerosos tipos de válvulas para una regulación siempre precisa

Todas las unidades de la gama JREF CW Radiales están equipadas de serie con válvulas de regulación equipadas con servomotor de 0-10V, que se pueden seleccionar en la versión de 2 vías con sistema de caudal variable, o de 3 vías, o con servomotor con retorno por muelle. A pedido también se pueden montar válvulas independientes de la presión. Todos estos tipos de válvulas garantizan la máxima precisión de regulación manteniendo el equilibrio hidrónico del sistema.

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

JREF CW R0150		0150	0170	0210	0250	0270	0320		
			Aire i	nterior 24°C - 50% / /	Agua refrigerada 7°C	- 12°C			
Potencia frigorífica	kW	14.6	17	21.2	24.8	27.2	31.7		
SHR		0.9	0.88	0.8	0.84	0.86	0.8		
EER		19.55	21.34	23.96	20.79	23.17	27.54		
			Aire i	nterior 30°C - 35% / A	Agua refrigerada 10°C	- 15°C			
Potencia frigorífica	kW	17.7	20.2	21.9	27.4	31.4	32.9		
SHR		1	1	1	1	1	0.99		
EER		23.62	25.33	24.83	22.98	26.72	28.56		
			Aire ii	nterior 35°C - 30% / A	lgua refrigerada 15°C	- 20°C			
Potencia frigorífica	kW	17.8	20.3	22	27.6	31.5	32.9		
SHR		1	1	1	1	1	1		
EER		23.84	25.46	24.86	23.14	26.83	28.59		
Caudal de aire nominal	m³/h	4130	4130	4130	6130	6060	5930		
Potencia absorbida por los ventiladores	kW	0.8	0.8	0.9	1.2	1.2	1.1		
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	59	60	61		62			
Dimensiones [LxHxA]	mm		600x2000x600			900x2000x600			
Alimentación eléctrica	V/ph/Hz		400/3+N/50						

Datos de rendimiento de las versiones Downflow. | También disponibles con alimentación de 60 Hz. | Altura modelos Displacement 2100 mm

JREF DX Radiales es la gama de acondicionadores perimetrales de expansión directa con ventiladores radiales EC estudiada para ser instalada en entornos tecnológicos pequeños como salas de servidores, laboratorios o aplicaciones en las que se requiere **un control preciso de los parámetros termohigrométricos** y un funcionamiento continuo las 24 horas del día. El diseño interior y la elección de los componentes están destinados en primer lugar a la eficiencia energética, para optimizar el consumo eléctrico general del sistema, favoreciendo el PUE (Power Usage Effectiveness) del Data Center.

Gama versátil y flexible

Está disponible con diferentes configuraciones frigoríficas:

Unidades condensadas por aire mediante condensador remoto.

Unidades condensadas por aqua de red (15°C) con condensador de placas incorporado.

JREF W Unidades condensadas por agua de Dry Cooler con condensador de placas incorporado.

Los JREF DX A Radiales son las unidades perimetrales condensadas por aire de la gama JREF y se utilizan ampliamente en la refrigeración de Data Centers. La solución condensada por aire ofrece un sistema sencillo, por la ausencia de otros circuitos auxiliares y bombas, una gestión fácil, ya que el circuito frigorífico se controla desde el armario, y una instalación fácil tanto de la unidad interna como del condensador remoto.

CONFIGURACIONES DEL FLUJO DE AIRE

Displacement

- Refrigerante R410A. También disponible con R513A y R134a
- Ventiladores EC
- Compresores Scroll on/off
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas, agua caliente y gas caliente (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (Δp control)(opcionales)
- · Válvula de expansión electrónica (opcional)
- Kit de bajas temperaturas para un funcionamiento ideal en caso de instalación en entornos muy fríos (opcional)
- Kit de larga distancia para un funcionamiento ideal en caso de grandes distancia entre las unidades interna y externa (opcional)

Seguridad en la sala de servidores

Todos los modelos de la gama JREF DX A Radiales incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Green

HiRef se empeña constantemente en la búsqueda de refrigerantes con un impacto ambiental cada vez menor. El uso de refrigerantes de clase AI de ASHRAE, no tóxicos y no inflamables, es esencial en las aplicaciones Close Control. Todas las unidades JREF DX A Radiales están disponibles con refrigerantes R134a y R513A.

Ventilación EC

Los ventiladores PLUG EC, de serie en toda la gama, se pueden regular mediante diferentes lógicas: caudal, sobrepresión ΔP y ΔT constantes. Su regulación precisa permite un uso eficiente de la energía eléctrica que se consume en la ventilación y la consiguiente reducción del PUE del sistema. La regulación de la velocidad con rango ampliado se realiza mediante el protocolo Modbus. Por último, la función «velocidad de emergencia» permite que el ventilador funcione incluso en caso de fallo de funcionamiento del microprocesador.

Eficiencia

La máxima fiabilidad y eficiencia de rendimiento de las unidades de HiRef está garantizada por la selección y el uso de componentes de la mejor calidad y por una disposición interna y externa inteligentemente diseñada.

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes incluso con la unidad en funcionamiento. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

Condensadores remotos

Todas las unidades pueden combinarse con los condensadores remotos HiRef v es posible seleccionar diferentes combinaciones, diseñadas para satisfacer todas las demandas del sistema. Los condensadores remotos de gran tamaño son ideales para entornos más cálidos, donde es necesario mantener la temperatura de condensación bajo control; por el contrario, los **condensadores** compactos poseen dimensiones pequeñas y consumos limitados. Los condensadores, combinados con unidades de dos circuitos, están disponibles con un solo circuito frigorífico para obtener la máxima fiabilidad y redundancia del sistema, o con dos circuitos frigoríficos para reducir el espacio y los costes de instalación.

JREF DX A R		0060	0080	0100	0110	0130	0160	0190	0205	0212	
			Aire interior 24°C - 50% / Aire exterior 35°C								
Potencia frigorífica	kW	6.5	8.6	10.8	11.9	13.8	16.7	19.7	22.6	22.8	
SHR		0.99	0.94	0.98	0.97	0.89	1	0.95	0.89	0.88	
EER		3.49	4.76	3.92	3.89	3.38	3.83	3.82	4.12	3.79	
Potencia absorbida total	kW	2	2	3	3.3	4.5	5.2	6	6.3	6.8	
		Aire interior 30°C - 35% / Aire exterior 35°C									
Potencia frigorífica	kW	7.1	9.4	12.1	13.4	15.2	18.9	22.1	24.7	24.9	
SHR		1	1	1	1	1	1	1	1	1	
EER		3.71	5.14	4.33	4.32	3.63	4.17	4.16	4.43	4.09	
Potencia absorbida total	kW	2	2	3.1	3.4	4.6	5.4	6.1	6.4	6.9	
Caudal de aire nominal	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100	
Núm. de circuitos		1	1	1	1	1	1	1	1	2	
N. compressori		1	1	1	1	1	1	1	1	2	
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	49	50		53	54	55		56		
Dimensiones [LxHxA]	mm	600x1875x600 900x1875x600									
Alimentación eléctrica	V/ph/Hz					400/3+N/50					

Datos de rendimiento de las versiones Downflow con refrigerante R410A combinadas con condensadores remotos HiRef estándares. | También disponibles con alimentación de 60 Hz. | Altura modelos Displacement 2125 mm

Las unidades JREF W Radiales son armarios perimetrales condensados por agua. La serie W utiliza agua de Dry Cooler. Los JREF de estas series son unidades monobloc en las que se concentra todo el circuito frigorífico. La condensación se produce gracias a un intercambiador de placas con soldadura fuerte de acero inoxidable AISI 304. Todas las unidades W pueden combinarse con los Dry Cooler HiRef.

Las unidades JREF Z Radiales son armarios perimetrales condensados por agua. **La serie Z** utiliza agua de red o agua subterránea a baja temperatura (15°C). Los JREF de estas series son unidades monobloc en las que se concentra **todo el circuito frigorífico**. La condensación se produce gracias a un **intercambiador de placas con soldadura fuerte de acero inoxidable AISI 304**.

CONFIGURACIONES DEL FLUJO DE AIRE

Downflow

Displacement

CONDENSADO POR AGUA

JREFDXWR

Dry Cooler

- Refrigerante R410A. También disponible con R513A y R134a
- Ventiladores EC
- Compresores Scroll on/off
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas, agua caliente y gas caliente (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Kit de bajas temperaturas para un funcionamiento ideal en caso de instalación en entornos muy fríos (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (△p control) (opcionales)
- Válvula de expansión electrónica (opcional)

Seguridad en la sala de servidores

Todos los modelos de la gama JREF W Radiales incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Ventilación EC

Los ventiladores PLUG EC, de serie en toda la gama, se pueden regular mediante diferentes lógicas: caudal, sobrepresión ΔP y ΔT constantes. Su regulación precisa permite un uso eficiente de la energía eléctrica que se consume en la ventilación y la consiguiente reducción del PUE del sistema. La regulación de la velocidad con rango ampliado se realiza mediante el protocolo Modbus. Por último, la función «velocidad de emergencia» permite que **el** ventilador funcione incluso en caso de fallo de funcionamiento del microprocesador.

Eficiencia

La máxima fiabilidad y eficiencia de rendimiento de las unidades de HiRef está garantizada por la selección y el uso de componentes de la mejor calidad y por una disposición interna y externa inteligentemente diseñada.

Green

HiRef se empeña constantemente en la búsqueda de refrigerantes con un impacto ambiental cada vez menor. El uso de refrigerantes de clase Al de ASHRAE, no tóxicos y no inflamables, es esencial en las aplicaciones Close Control. Todas las unidades JREF W Radiales están disponibles con refrigerantes R134a y R513A.

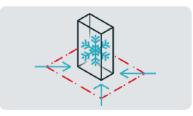
Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes incluso con la unidad en funcionamiento. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

JREF DX W R		0060	0800	0100	0110	0130	0160	0190	0205	0212	
					Aire interior 24	4°C - 50% / Ag	ua 40°C - 45°C				
Potencia frigorífica	kW	6.6	8	10.5	11.5	13.6	16.3	18.9	20.8	22	
SHR		0.98	0.98	1	0.98	0.91	1	0.97	0.93	0.9	
EER		3.82	3.78	3.54	3.54	3.18	3.66	3.45	3.17	3.35	
Potencia absorbida total	kW	1.9	2.3	3.2	3.5	4.7	5.3	6.3	7.4	7.4	
			Aire interior 30°C - 35% / Agua 40°C - 45°C								
Potencia frigorífica	kW	7.3	8.8	11.8	13.2	15.1	18.7	21.5	23.1	24.2	
SHR		1	1	1	1	1	1	1	1	1	
EER		4.12	4.17	4	4.04	3.49	4.17	3.88	3.48	3.69	
Potencia absorbida total	kW	1.9	2.3	3.2	3.5	4.7	5.3	6.4	7.5	7.4	
Caudal de aire nominal	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100	
Núm. de circuitos		1	1	1	1	1	1	1	1	2	
N. compressori		1	1	1	1	1	1	1	1	2	
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	49	50		53	54	55		56		
Dimensiones [LxHxA]	mm	600x18	600x1875x600 900x1875x600								
Alimentación eléctrica	V/ph/Hz					400/3+N/50					

Datos de rendimiento de las versiones Downflow con refrigerante R410A. | También disponibles con alimentación de 60 Hz. | Altura modelos Displacement 2125 mm

JREF DX Z R		0060	0800	0100	0110	0130	0160	0190	0205	0212	
					Aire interior 2	4°C - 50% / Ag	jua 15°C - 30°C				
Potencia frigorífica	kW	7.3	9.1	11.7	12.8	15.7	19.1	22.2	24.1	24.5	
SHR		0.89	0.89	0.94	0.92	0.86	0.93	0.9	0.86	0.85	
EER		5.99	6.07	5.21	5.01	5.03	5.8	5.53	4.99	4.74	
Potencia absorbida total	kW	1.3	1.7	2.5	2.8	3.5	4.1	4.8	5.7	6	
			Aire interior 30°C - 35% / Agua 15°C - 30°C								
Potencia frigorífica	kW	7.8	9.9	12.9	14.3	16.8	21.2	24.3	25.9	26.5	
SHR		1	1	1	1	1	1	1	1	1	
EER		6.39	6.55	5.73	5.57	5.37	6.39	5.97	5.34	5.14	
Potencia absorbida total	kW	1.3	1.7	2.5	2.9	3.5	4.2	4.9	5.7	6	
Caudal de aire nominal	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100	
Núm. de circuitos		1	1	1	1	1	1	1	1	2	
N. compressori		1	1	1	1	1	1	1	1	2	
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	49	50		53	54	55		56		
Dimensiones [LxHxA]	mm	600x18	75x600				900x1875x600				
Alimentación eléctrica	V/ph/Hz		400/3+N/50								


Datos de rendimiento de las versiones Downflow con refrigerante R410A. | También disponibles con alimentación de 60 Hz. | Altura modelos Displacement 2125 mm

JREF CW Centrifugos es la gama de acondicionadores perimetrales por agua enfriada con ventiladores centrifugos AC para entornos tecnológicos pequeños como salas de servidores, laboratorios o aplicaciones en las que se requiere **un control preciso de los parámetros termohigrométricos y un funcionamiento continuo las 24 horas del día.** El diseño interno y la elección de los componentes están orientados, en primer lugar, a obtener un tamaño compacto para que **la instalación de la unidad sea lo más flexible posible.**

Alta densidad de potencia

El footprint reducido y el alto rendimiento permiten una alta densidad de potencia frigorífica. De esta manera es posible minimizar el espacio dedicado a las unidades en la sala y aprovechar al máximo el espacio disponible.

Doble circuito

Las unidades por agua enfriada también están disponibles con doble circuito. En esta versión, la alimentación se realiza a través **de dos circuitos hidráulicos diferentes que ofrecen la máxima continuidad de funcionamiento en caso de fallo de uno de ellos.** Cada circuito está equipado con una válvula de regulación.

- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas, batería adicional de agua caliente o ambos (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Modulación de la velocidad de los ventiladores de acuerdo con la carga térmica (\DT constante)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Función de lectura instantánea del caudal de agua, de las temperaturas de entrada y salida del agua, o de la capacidad frigorífica suministrada (opcionales)

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

Batería de aletas con tratamiento hidrofílico

Todos los modelos de la gama JREF CW Centrífugos incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida y la salida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Numerosos tipos de válvulas para una regulación siempre precisa

Todas las unidades de la gama JREF CW Centrífugos están equipadas de serie con válvulas de regulación equipadas con servomotor de 0-10V, que se pueden seleccionar en la versión de 2 vías con sistema de caudal variable, o de 3 vías, o con servomotor con retorno por muelle. A pedido también se pueden montar válvulas independientes de la presión. Todos estos tipos de válvulas garantizan la máxima precisión de regulación manteniendo el equilibrio hidrónico del sistema.

JREF CW C		0800	0110	0140	0160	0200	0230
			Aire interio	or 24°C - 50% / /	Agua refrigerada	a 7°C - 12°C	
Potencia frigorífica	kW	6.9	10	12.8	14.5	18.7	20.8
SHR		0.87	0.85	0.88	0.87	0.88	0.85
EER		31.27	35.76	22.84	25.83	27.86	31.06
			Aire interio	r 30°C - 35% / A	gua refrigerada	10°C - 15°C	
Potencia frigorífica	kW	8.8	10.7	15.3	17	21.8	23.7
SHR		0.94	1	1	1	1	1
EER		40	38.09	27.34	30.44	32.53	35.35
			Aire interio	r 35°C - 30% / A	gua refrigerada	15°C - 20°C	
Potencia frigorífica	kW	8.9	10.7	15.4	17.1	22	23.8
SHR		0.94	1	1	1	1	1
EER		40.25	38.24	27.53	30.56	32.77	35.49
Caudal de aire nominal	m³/h	1785	2150	3530	3470	5115	4990
Potencia absorbida por los ventiladores	kW	0.2	0.3	0.6	0.6	0.7	0.7
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	48	50	5	1	5	2
Dimensiones [LxHxA]	mm	600 x 18	75 x 449	900x18	75 x 449	1200×18	75 x 449
Alimentación eléctrica	V/ph/Hz	/Hz 400/3+N/50					

Los JREF DX Centrífugos son unidades de expansión directa con ventiladores centrífugos AC estudiadas para ser instaladas en entornos tecnológicos pequeños como salas de servidores, laboratorios o aplicaciones en las que se requiere **un control preciso de los parámetros termohigrométricos y un funcionamiento continuo las 24 horas del día.** El diseño interno y la elección de los componentes están orientados, en primer lugar, **a obtener un tamaño compacto para que la instalación de la unidad sea lo más flexible posible.**

Los JREF DX A Centrífugos son las unidades perimetrales condensadas por aire de la gama JREF y se utilizan ampliamente en la refrigeración de Data Centers. La solución condensada por aire **ofrece un sistema sencillo**, por la ausencia de otros circuitos auxiliares y bombas, una gestión fácil, ya que el circuito frigorífico se controla desde el armario, y una instalación fácil tanto de la unidad interna como del condensador remoto.

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes incluso con la unidad en funcionamiento. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

Gama versátil y flexible

La gama JREF DX está disponible con diferentes configuraciones frigoríficas.

Condensación por aire con condensador remotoo

Condensación por agua de torre evaporativa o Dry Cooler

JREF Z

Condensación por agua de red (15°C)

Eficiencia

La máxima fiabilidad y eficiencia de rendimiento de las unidades de HiRef está garantizada por la selección y el uso de componentes de la mejor calidad y por una disposición interna y externa inteligentemente diseñada.

- Refrigerante R410A. También disponible con R513A y R134a
- Compresores Scroll on/off
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas, agua caliente y gas caliente (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Válvula de expansión electrónica (opcional)
- Kit de bajas temperaturas para un funcionamiento ideal en caso de instalación en entornos muy fríos (opcional)
- Kit de larga distancia para un funcionamiento ideal en caso de grandes distancias entre las unidades interna y externa (opcional)

Seguridad en la sala de servidores

Todos los modelos de la gama JREF DX A Centrífugos incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, **favorece la recogida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.**

Green

HiRef se empeña constantemente en la búsqueda de refrigerantes con un impacto ambiental cada vez menor. El uso de refrigerantes de clase A1 de ASHRAE, no tóxicos y no inflamables, es esencial en las aplicaciones Close Control. Todas las unidades JREF DX A Centrífugos están disponibles con refrigerantes R134a y R513A.

Condensadores remotos

Todas las unidades pueden combinarse con los condensadores remotos HiRef y es posible seleccionar diferentes combinaciones, diseñadas para satisfacer todas las demandas del sistema. Los condensadores remotos de gran tamaño son ideales para entornos más cálidos, donde es necesario mantener la temperatura de condensación bajo control; por el contrario, los condensadores compactos poseen dimensiones pequeñas y consumos limitados. Los condensadores, combinados con unidades de dos circuitos, están disponibles con un solo circuito frigorífico para obtener la máxima fiabilidad y redundancia del sistema, o con dos circuitos frigoríficos para reducir el espacio y los costes de instalación.

-CONFIGURACIONES DEL FLUJO DE AIRE

JREF DX A C		0060	0800	0100	0110	0130	0160	0190	0205			
			Aire interior 24°C - 50% / Aire exterior 35°C									
Potencia frigorífica	kW	6.5	8.6	11.2	12.3	14.6	16.2	19.7	22.6			
SHR		0.99	0.94	0.99	0.95	0.9	0.98	0.94	0.87			
EER		3.52	4.79	4.06	4.01	3.53	3.71	3.82	4.12			
Potencia absorbida total	kW	2.1	2.1	3.3	3.6	4.7	5	5.8	6.2			
			Aire interior 30°C - 35% / Aire exterior 35°C									
Potencia frigorífica	kW	7.1	9.4	12.4	13.7	16	18.3	21.9	24.4			
SHR		1	1	1	1	1	1	1	1			
EER		3.7	5.19	4.43	4.39	3.79	4.08	4.12	4.39			
Potencia absorbida total	kW	2.2	2.1	3.4	3.7	4.8	5.2	6	6.2			
Caudal de aire nominal	m³/h	1785	2150	3690	3530	3470	5115	4990	4990			
Núm. de circuitos		1	1	1	1	1	1	1	1			
N. compressori		1	1	1	1	1	1	1	1			
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	46	1	48	49	51	52	5	i3			
Dimensiones [LxHxA]	mm	600x18	600x1875x449 900x1875x449 1200x1875x449									
Alimentación eléctrica	V/nh/Hz				/,00/3	+N/50						

Datos de rendimiento de las versiones Downflow combinadas con el condensador remoto HiRef estándar. | También disponibles con alimentación de 60 Hz. | Altura modelos Displacement 2125 mm

Las unidades JREF W Centrífugas son armarios perimetrales condensados por agua que utilizan agua de Dry Cooler. Los JREF de estas series son unidades monobloc en cuyo interior se concentra **todo el circuito frigorífico**. La condensación se produce gracias a un **intercambiador de placas con soldadura fuerte de acero inoxidable AISI 304**. Todas las unidades W pueden combinarse con los **Dry Cooler HiRef**.

Las unidades JREF Z Centrífugos son armarios perimetrales condensados por agua. **La serie Z** utiliza agua de red o agua subterránea a baja temperatura (15°C). Los JREF de estas series son unidades monobloc en las que se concentra todo el circuito frigorífico. La condensación se produce gracias a un **intercambiador de placas con soldadura fuerte de acero inoxidable AISI 304.**

Upflow Downflow Displacement

- Refrigerante R410A. También disponible con R513A y R134a
- Compresores Scroll on/off
- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas, agua caliente y gas caliente (opcional)
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Kit de bajas temperaturas para un funcionamiento ideal en caso de instalación en entornos muy fríos (opcional)
- Amplia gama de accesorios que incluyen módulos básicos y plénum para canalización
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Válvula de expansión electrónica (opcional)

Eficiencia

La máxima fiabilidad y eficiencia de rendimiento de las unidades de HiRef está garantizada **por la selección y el uso de componentes de la mejor calidad y por una disposición interna y externa inteligentemente diseñada.**

Seguridad en la sala de servidores

Todos los modelos de la gama JREF W Centrífugos incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes incluso con la unidad en funcionamiento. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

Green

HiRef se empeña constantemente en la búsqueda de refrigerantes con un impacto ambiental cada vez menor. El uso de refrigerantes de clase A1 de ASHRAE, no tóxicos y no inflamables, es esencial en las aplicaciones Close Control. Todas las unidades JREF W Centrífugos están disponibles con refrigerantes R134a y R513A.

JREF DX W C		0060	0800	0100	0110	0130	0160	0190	0205		
				Aire i	nterior 24°C - 50	% / Agua 40°C -	45°C				
Potencia frigorífica	kW	6.7	8.1	11	12.1	14.9	16.3	19.8	21.8		
SHR		0.97	0.97	0.99	0.97	0.9	0.98	0.94	0.89		
EER		3.91	3.92	3.82	3.81	3.66	3.91	3.9	3.63		
Potencia absorbida total	kW	1.9	2.4	3.4	3.7	4.6	4.8	5.7	6.7		
			Aire interior 30°C - 35% / Agua 40°C - 45°C								
Potencia frigorífica	kW	7.4	9	12.3	13.6	16.3	18.4	22	23.7		
SHR		1	1	1	1	1	1	1	1		
EER		4.25	4.38	4.32	4.33	4	4.42	4.33	3.95		
Potencia absorbida total	kW	2	2.3	3.4	3.7	4.6	4.8	5.7	6.7		
Caudal de aire nominal	m³/h	1785	2150	3690	3530	3470	5115	4990	4990		
Núm. de circuitos		1	1	1	1	1	1	1	1		
N. compressori		1	1	1	1	1	1	1	1		
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	46	4	8	49	51	52	Ę	53		
Dimensiones [LxHxA]	mm	600x18	75x449		900x1875x449			1200x1875x449			
Alimentación eléctrica	V/ph/Hz				400/3	+N/50					

Datos de rendimiento de las versiones Downflow con refrigerante R410A. | También disponibles con alimentación de 60 Hz. | Altura modelos Displacement 2125 mm

JREF DX Z C		0060	0800	0100	0110	0130	0160	0190	0205		
				Aire i	interior 24°C - 50)% / Agua 15°C -	30°C				
Potencia frigorífica	kW	7.4	9.3	12.4	14	17.1	19.5	23.7	25.8		
SHR		0.89	0.88	0.92	0.89	0.84	0.88	0.86	0.82		
EER		6.29	6.5	6.02	5.84	5.78	6.35	6.39	5.9		
Potencia absorbida total	kW	1.4	1.7	2.6	3	3.5	3.7	4.4	5		
			Aire interior 30°C - 35% / Agua 15°C - 30°C								
Potencia frigorífica	kW	8	10.1	13.5	15.5	18.3	21.4	25.5	27.7		
SHR		1	1	1	1	1	1	1	0.99		
EER		6.81	7.07	6.59	6.51	6.2	6.94	6.88	6.32		
Potencia absorbida total	kW	1.4	1.7	2.6	2.9	3.5	3.7	4.4	5		
Caudal de aire nominal	m³/h	1785	2150	3690	3530	3470	5115	4990	4990		
Núm. de circuitos		1	1	1	1	1	1	1	1		
N. compressori		1	1	1	1	1	1	1	1		
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	46	1	48	49	51	52	5	3		
Dimensiones [LxHxA]	mm	600x18	75x449		900x1875x449			1200x1875x449			
Alimentación eléctrica	V/ph/Hz	400/3+N/50									

Datos de rendimiento de las versiones Downflow con refrigerante R410A. | También disponibles con alimentación de 60 Hz. | Altura modelos Displacement 2125 mm

Los acondicionadores por agua enfriada de la serie FanWall HBCV son diseñados específicamente para entornos tecnológicos donde se requiere un footprint reducido a igualdad de potencia frigorífica suministrada. Un minucioso análisis fluidodinámico CFD ha permitido diseñar con máxima precisión todos los detalles de construcción para minimizar las pérdidas de carga en el flujo de aire interior y el consumo de energía de los ventiladores. Además, la gran superficie del intercambiador de aletas minimiza los enfoques térmicos entre el aire de entrada y el agua de salida, maximizando la eficiencia del sistema.

Ventilación EC 2.0

Los ventiladores PLUG EC, de serie en toda la gama, permiten modificar el caudal de aire de acuerdo con la carga térmica. Su regulación precisa permite un uso eficiente de la energía eléctrica que se consume en la ventilación y la consiguiente **reducción del PUE del sistema**. La regulación de la velocidad con rango ampliado se realiza mediante el protocolo Modbus. Por último, la función «velocidad de emergencia» permite que **el ventilador funcione incluso en caso de fallo de funcionamiento del microprocesador.**

Máxima redundancia posible

Para garantizar continuidad de funcionamiento del sistema, la gama FanWall HBCV ofrece la posibilidad de disponer de un circuito frigorífico **totalmente redundante**: dos baterías y dos válvulas de regulación del agua permiten la refrigeración de la sala de servidores **incluso cuando falla uno de los dos circuitos.**

- Bandeja de condensados de acero inoxidable
- Modulación de la velocidad de los ventiladores de acuerdocon la carga térmica (ΔT constante)
- Modulación de la ventilación con caudal constante (Airflow Control), opcional
- Doble alimentación con interruptor automático (Bajo petición)
- Función de lectura instantánea de la capacidad frigorífica suministrada (opcional)

Batería de aletas con tratamiento hidrofílico

Todos los modelos de la gama FanWall HBCV incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida y la salida de los condensados en el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Batería de aletas impelente

Por una elección de diseño específica, la batería de aletas está colocada después de los ventiladores. Esto asegura una distribución más uniforme del aire de impulsión en los racks, minimizando las turbulencias del flujo de aire.

Numerosos tipos de válvulas para una regulación siempre precisa

Todas las unidades de la gama FanWall HBCV están equipadas de serie con válvulas de regulación equipadas con servomotor de 0-10V, que se pueden seleccionar en la versión de 2 vías con sistema de caudal variable, o de 3 vías, o con servomotor con retorno por muelle. A pedido también se pueden montar válvulas independientes de la presión. Todos estos tipos de válvulas garantizan la máxima precisión de regulación manteniendo el equilibrio hidrónico del sistema.

Regulación de la ventilación

En función de la lógica de distribución del aire en la sala de servidores, es posible elegir el sistema de ventilación más adecuado montado en la máquina, **garantizando un caudal de aire constante** (airflow control) **o una sobrepresión disponible constante** (∆p control); esta última está indicada especialmente en el caso de utilizar un suelo sobreelevado.

Mantenimiento ordinario más fácil

La unidad ha sido diseñada meticulosamente para permitir un acceso frontal del lado de entrada del aire a los componentes internos incluso con la unidad en funcionamiento. Este aspecto facilita las operaciones de mantenimiento ordinario respetando plenamente los requisitos de seguridad.

- w u		051	100	401		0/0	7/0
FanWall		051	102	121	171	242	342
Geometria B			Aire interior	30°C - 35% / A	lgua refrigerad	la 10°C - 18°C	
Potencia frigorífica	kW	48.5	97	118.2	173.4	236.4	346.8
SHR		1	1	1	1	1	1
EER		69.3	69.29	62.21	59.79	62.21	59.79
Geometria C			Aire interior	30°C - 35% / A	gua refrigerad	a 10°C - 22°C	
Potencia frigorífica	kW	44.9	89.8	110.2	164.4	220.4	328.8
SHR		1	1	1	1	1	1
EER		64.1	64.1	58	56.7	58	56.7
Geometria B			Aire interior	35°C - 25% / A	lgua refrigerad	la 10°C - 18°C	
Potencia frigorífica	kW	63.7	127.4	157.1	230.3	314.2	460.6
SHR		1	1	1	1	1	1
EER		91	91	82.68	79.41	82.68	79.41
Geometria C			Aire interior	35°C - 25% / A	gua refrigerad	a 10°C - 22°C	
Potencia frigorífica	kW	60.6	121.2	148.9	219.8	297.8	439.6
SHR		1	1	1	1	1	1
EER		86.6	86.6	78.4	75.8	78.4	75.8
Caudal de aire nominal	m³/h	8700	17400	21200	31100	42400	62200
Potencia absorbida por los ventiladores	kW	0.7	1.4	1.9	2.9	3.8	5.8
Dimensiones [LxHxA]	mm	1500 x1475 x1300	1500 x2950 x1300	2950 x1475 x1300	4000 x1475 x1300	2950 x2950 x1300	4000 x2950 x1300
Alimentación eléctrica	V/ph/Hz			400/3	+N/50		
Numero modulo		1	2	1	1	2	2

Datos de rendimiento de las versiones por agua enfriada. | También disponibles con alimentación de 60 Hz. | Las dimensiones indicadas se refieren a los modelos estándares, pero pueden personalizarse según el contexto de aplicación.

Los HTI CW son acondicionadores de aire split para la climatización de salas CPD pequeñas y medianas. Diseñados para la instalación en el techo o en las paredes, son aptas para el acondicionamiento de centrales conpoco espacio interior o totalmente dedicado a los equipos tecnológicos. Gracias a la disposición racional de los componentesy a la amplia gama de accesorios disponibles, las unidades son fáciles de instalar y se adaptan a diferentes configuraciones de shelters.

- Control de la temperatura mediante sistemas de calefacción y poscalefacción con resistencias eléctricas (opcional)
- Control de la humedad mediante deshumidificación y humidificación con humidificador externo (opcional)
- Modulación de la velocidad de los ventiladores de acuerdo con la carga térmica (ΔT constante)
- Disponible en la versión con doble alimentación eléctrica para emergencias: red de 230/400 y emergencia 24/48 Vcc
- Carpintería recubierta con pintura en polvo epoxi de serie
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Función de lectura instantánea de las temperaturas del agua de entrada y de salida (Bajo petición)

Intercambiador de aletas con tratamiento hidrofílico

Todos los modelos de la gama HTI CW incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Ventilación EC

Los ventiladores EC, de serie en toda la gama, permiten modificar el caudal de aire de acuerdo con la carga térmica. Su regulación precisa permite un uso eficiente de la energía eléctrica que se consume en la ventilación y la consiguiente **reducción del PUE del sistema**. La regulación de la velocidad con rango ampliado se realiza mediante el protocolo Modbus. Por último, la función «velocidad de emergencia» permite que **el ventilador funcione incluso en caso de fallo de funcionamiento del microprocesador.**

Redundancia máxima

En caso de alimentación red+grupo de continuidad de corriente continua (DUAL), el modo (opcional) Free-Cooling garantiza las correctas condiciones térmicas en el interior del entorno, incluso en caso de fallo en la red eléctrica. De esta manera, se garantiza la continuidad del funcionamiento del sistema.

Instalación sencilla y rápida

Las unidades se pueden instalar en el techo o en la pared, según sea necesario. Gracias al uso de ventiladores Plug EC, los acondicionadores de la serie HTI CW garantizan una distribución ideal del aire, eficiencia, ahorro de energía, fiabilidad y medidas compactas, independientemente de la configuración elegida.

Mantenimiento ordinario más fácil

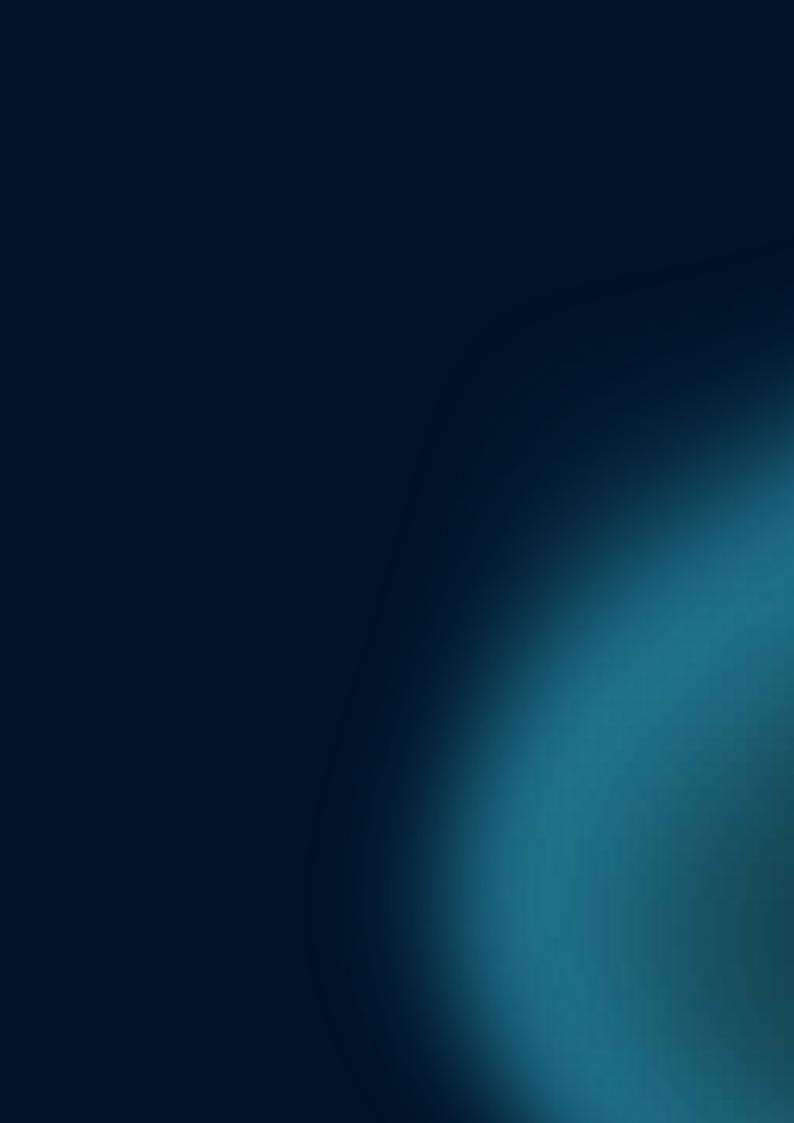
La unidad ha sido diseñada meticulosamente para permitir un acceso frontal a los componentes. Este aspecto, junto con la posibilidad de extraer completamente los filtros y la posible compuerta de Free-Cooling, es muy ventajoso para las operaciones de mantenimiento ordinario.

Numerosos tipos de válvulas para una regulación siempre precisa

Todas las unidades de la gama HTI CW están equipadas de serie con válvulas de regulación equipadas con servomotor de 0-10V, que se pueden seleccionar en la versión de 2 vías con sistema de caudal variable, o de 3 vías. A pedido también se pueden montar un servomotor con retorno por muelle y válvulas independientes de la presión. Todos estos tipos de válvulas garantizan la máxima precisión de regulación manteniendo el equilibrio hidrónico del sistema.

Máximo ahorro de energía con el Free-Cooling directo

A pedido, las unidades pueden estar equipadas con un módulo de Free Cooling directo. Este sistema, que también se puede instalar en el interior de una unidad ya en funcionamiento, reduce el trabajo de las unidades enfriadoras para la generación del agua enfriada de alimentación (Free Cooling parcial) y, en condiciones de Free Cooling total, permite que se apague, con efectos importantes en la reducción del PUE (Power Usage Effectiveness) del sistema.

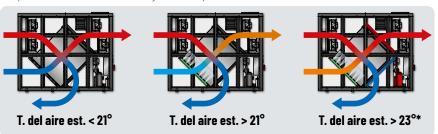


HTI CW		0073	0105	0120	0145	0310	0380			
			AIRE IN	TERIOR 27°C - 40% / /	AGUA REFRIGERADA 7°	C - 12°C				
Potencia frigorífica	kW	8.9	10.1	13.1	14.6	38.4	45.4			
SHR		0.82	0.78	0.83	0.79	0.92	0.85			
EER		52.88	51.03	52.11	49.35	33.25	36.78			
			AIRE IN	TERIOR 30°C - 35% / A	Gua refrigerada 10°	C - 15°C				
Potencia frigorífica	kW	7.9	8.5	11.5	12.5	36.3	41.7			
SHR		0.94	0.9	0.96	0.91	1	0.95			
EER		47.07	43.27	45.54	42.39	31.37	33.78			
			AIRE IN	TERIOR 35°C - 30% / A	GUA REFRIGERADA 15°	C - 20°C				
Potencia frigorífica	kW	7.9	8.4	11.3	12.4	35.6	41.8			
SHR		0.98	0.96	1	0.96	1	0.99			
EER		46.69	42.89	44.76	42.02	30.84	33.82			
Caudal de aire nominal	m³/h	1300	1300	1950	1950	7000	7000			
Potencia absorbida por los ventiladores	kW	0.2	0.2	0.3	0.3	1.2	1.2			
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	53	55	54	56	6	6			
Dimensiones [LxHxA]	mm	1050x3	58 x 936	1150x40	08x1026	1500x6	85 x 1096			
Alimentación eléctrica	V/ph/Hz		230/1/50 400/3+N/50							

También disponibles con alimentación de 60 Hz. La unidad se puede instalar solo en el techo para los tamaños 0310-0381.

CHiRef

ACONDICIONADORES EVAPORATIVOS AIRE-AIRE



La combinación del sistema de refrigeración evaporativa con el intercambiador aire/aire de flujos cruzados de la gama HDB - DataBatic permite **ampliar el Free-Cooling indirecto durante más horas al año y a varias zonas climáticas.** La disminución y en algunos casos la anulación del funcionamiento mecánico implica un beneficio doble: **la reducción de los costes de gestión**, para una mayor eficiencia energética anual (PUE reducidos), y **la reducción de los costes de implementación**, gracias a las menores potencias eléctricas instaladas.

Las unidades HDB pueden integrar la opción **«circuito frigorífico»** y **se ensamblan completamente en fábrica** en una solución monobloc **para facilitar las operaciones de instalación.**

Integración por expansión directa o por agua enfriada

Cuando las condiciones climáticas externas no permiten satisfacer la carga interna solo con el funcionamiento de Free Cooling indirecto + Refrigeración Evaporativa, se activa el sistema de refrigeración mecánica. Por dicho motivo, está disponible la opción de circuito frigorífico con compresores modulantes BLDC con R410A, válvula de expansión con control electrónico y evaporador de aletas con tratamiento hidrofílico. Como alternativa, es posible instalar una batería fría de aqua enfriada que se debe conectar a una enfriadora externa.

* Condiciones de bulbo húmedo para un Data Center de 1 MW (Redundancia N+1) en Ámsterdam a 36°C - 25%; T. del aire de impulsión 24°C; T. máx. del aire de impulsión 26°C

- Posibilidad de gestionar varias unidades en paralelo en el mismo sistema
- Intercambiador térmico de flujos cruzados de alta eficiencia recubierto con tratamiento epoxi para la protección contra la corrosión (certificación Eurovent)
- Gestión de la sobrepresión en el plénum de distribución del aire (Δp Control)
- Acceso lateral y frontal de todos los componentes, inclusive con la unidad en funcionamiento, para facilitar el mantenimiento y evitar tener que detener el sistema
- Paneles desarrollados y ensamblados de conformidad con la norma UNI 1886
- Kit para la renovación del aire con compuertas modulantes (Fresh air kit) (Bajo petición)
- Humidificador de ultrasonidos (Bajo petición)
- Kit para usos con bajas temperaturas del aire exterior (hasta -40°C) (Bajo petición)

Ventiladores plug fan con motor EC

La ventilación tipo EC en ambos flujos de aire permite:

- aumentar la eficiencia a las cargas parciales;
- · reducir las emisiones sonoras;
- seguir de manera precisa las variaciones de carga térmica.

Los consumos de los ventiladores, en la versión «sustituibles en caliente» (Hot Swappable Fans), se visualizan en tiempo real en la pantalla instalada en la máquina.

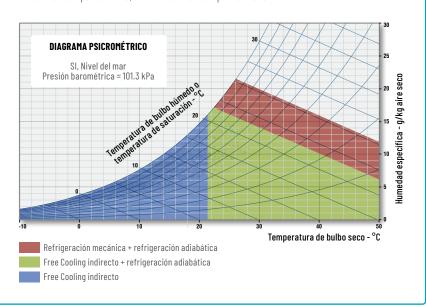
Refrigeración evaporativa en el flujo de aire desde el exterior

Las unidades HDB - DataBatic incorporan la tecnología Refrigeración Evaporativa (Evaporative Cooling) que se basa en el uso de boquillas que nebulizan agua en el flujo de aire que proviene desde el exterior. El agua, al evaporarse, enfría el aire por efecto adiabático que luego atraviesa el intercambiador de flujos cruzados a una temperatura próxima a la temperatura de bulbo húmedo, ampliando el período de tiempo en el que es posible utilizar el Pree-Cooling. Por último, el sistema es tipo multipaso con respecto al flujo de aire, con la finalidad de optimizar la eficiencia de saturación.

Free-Cooling indirecto por aire

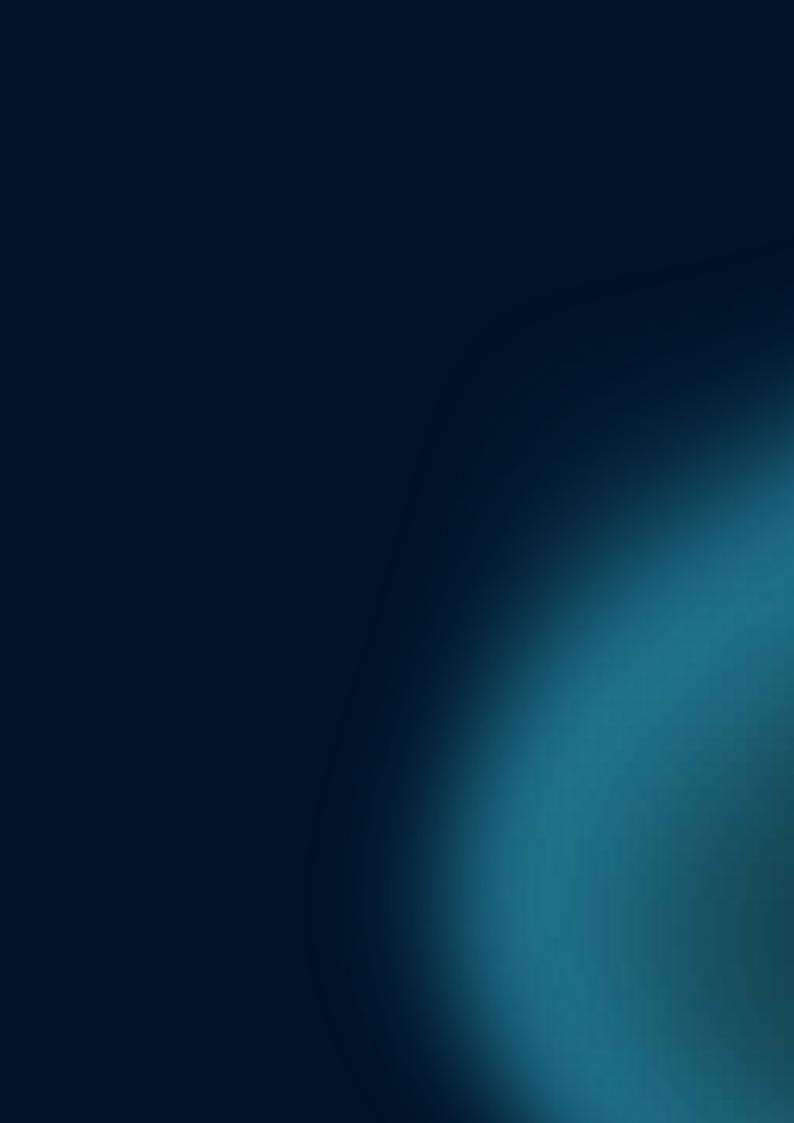
El Free Cooling indirecto contrariamente al directo:

- no crea contaminación entre el aire del interior del Data Center y el aire exterior;
- bloquea la entrada de polvo y contaminantes en el interior de las salas sin necesidad de filtración adicional;
- no aumenta la carga latente.


Por consiguiente, se óbtiene una **evidente reducción de los consumos de energía para la gestión del sistema.**

Función de ahorro de agua y sistema libre de legionella

La lógica de regulación de la bomba, de tipo electrónico modulante, permite **optimizar la saturación del aire**, reduciendo al mismo tiempo el valor de la WUE(Water Usage Effectiveness) y los consumos energéticos. La configuración particular del circuito hidráulico y los algoritmos predispuestos para su gestión, por un lado garantizan **la necesidad de reposición de agua en el sistema** para evitar altas concentraciones de sales en el agua y, por otro lado, **evitan que el agua se estanque en el depósito de recogida,** con riesgo de proliferación de legionella.


Ejemplo de uso para un Data Center de 1 MW (Redundancia N+1) en Ámsterdam a 36°C-25%; T. del aire de impulsión 24°C; T. máx. del aire de impulsión 26°C

DataBatic		0060	0100	0200	0300
		Aire interior 36°C -	25% / Aire de impulsió	n 24°C / SHR = 1 / Aire	exterior 35°C - 30%
Caudal de aire nominal	m³/h	15000	27000	53000	82500
Potencia frigorífica mínima	kW	10	60	100	200
Potencia frigorífica máximo	kW	60	100	200	330
Dimensiones [LxHxA]	mm	2750x2650x1180	4200x2650x2250	4700x3600x2250	4700x3600x3100
Alimentación eléctrica	V/ph/Hz		400/3	+N/50	

Datos de rendimiento relativos al modo de funcionamiento del circuito por aqua enfriada o expansión directa en la integración. | También disponibles con alimentación de 60 Hz. | Medidas relativas a la unidad básica sin accesorios en la versión Free-Cooling e integración.

CHiRef

ACONDICIONADORES ALTA DENSIDAD

DATA CENTER

NRCD/NRCV

ACONDICIONADORES DE EXPANSIÓN DIRECTA PARA RACK DE ALTA DENSIDAD CON COMPRESORES INVERTER

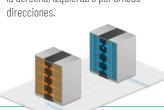
NRCD > 12.4-50.1 kW

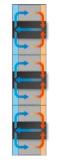
NRCV > 13.3-37.4 kW

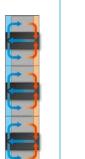
ideal para la refrigeración de armarios Rack en Data Centers de pequeñas y medianas dimensiones, donde se requiere un control de precisión de los parámetros termohigrométricos ambientales 24 horas al día. Son aptos especialmente para pequeñas instalaciones donde no es posible instalar una enfriadora o cuando no se admite la presencia de agua en el Data Center. El diseño interior y la selección de los componentes están destinados a obtener altos niveles de eficiencia de energía, con la finalidad de **minimizar los costes de gestión de** todo el sistema. Además, las unidades NRCD tienen un condensador remoto externo que garantiza eficiencia y fiabilidad. La gama NRCD se propone en dos configuraciones diferentes dependiendo del modo de refrigeración de los armarios rack, que se puede obtener mediante la creación de pasillos calientes y fríos en el Data Center a través de la compartimentación y la refrigeración localizada.

Configuración In-Rack o In-Row.

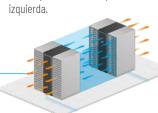
CONDENSADO **POR AIRE**

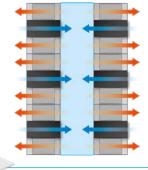



- Refrigerante R410A
- Ventiladores EC
- Compresores Twin rotary y Scroll inverter
- Válvula de expansión electrónica (opcional)
- Control avanzado microprocesado, programable con display LCD
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (Δp control)(opcionales)
- Kit de bajas temperaturas para un funcionamiento ideal en caso de instalación en entornos muy fríos (opcional)


IN RACK

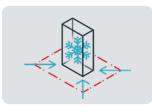
IN RACK: En esta configuración se genera un circuito cerrado entre el rack cooler y el armario rack. El aire puede ser aspirado y enviado por la derecha, izquierda o por ambas



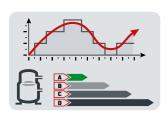


IN ROW

IN ROW: En esta configuración se libera aire frío en el «pasillo frío» hacia cada armario rack y el aire caliente del entorno circundante es aspirado por el rack cooler. El aire puede ser enviado de manera frontal, por la derecha o por la izquierda.


Ventiladores sustituibles en caliente

Para limitar al máximo la parada de la máquina, la sustitución de un ventilador defectuoso puede realizarse sin necesidad de apagar la unidad, gracias al uso de la rejilla de protección y de los conectores para la parte de alimentación y de control. La sustitución de los ventiladores se convierte así en una operación de mantenimiento ordinario.


Seguridad en la sala de servidores

Todos los modelos de la gama NRCD incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, **favorece la** recogida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior v exterior de la unidad.

Alta densidad de potencia

El diseño interior y la disposición particular de los componentes permiten tener una batería evaporadora con una gran superficie de intercambio térmico. El footprint de la unidad sigue siendo reducido, aprovechando al máximo el espacio ocupado en la sala de servidores.

Modulación de la potencia

Las unidades se adaptan rápidamente a la demanda frigorífica del Data Center. Gracias al compresor controlado por inverter, es posible modular el rendimiento hasta el 25% del rendimiento nominal, reduciendo al mismo tiempo el consumo. Esto garantiza un funcionamiento continuo de la unidad incluso con cargas bajas, sin que se produzcan ciclos de encendido y apagado.

Ventilación EC

Los ventiladores PLUG EC, de serie en toda la gama, se pueden regular mediante diferentes lógicas: caudal, sobrepresión ΔP y ΔT constantes. Su regulación precisa permite un uso eficiente de la energía eléctrica que se consume en la ventilación y la consiguiente reducción del PUÉ del sistema. La regulación de la velocidad con rango ampliado se realiza mediante el protocolo Modbus. Por último, la función «velocidad de emergencia» permite que **el** ventilador funcione incluso en caso de fallo de funcionamiento

del microprocesador.

Cuadro eléctrico deslizante

Para los tamaños con una estructura de 300 mm de ancho, el cuadro eléctrico está diseñado para ocupar el menor espacio posible y no interferir en la distribución del aire en toda la altura útil de la unidad. Por lo tanto, se ha realizado la versión deslizante de corredera, sin impedir la accesibilidad durante las operaciones de primera puesta en marcha y de mantenimiento extraordinario. Además la configuración evita enredos de cables.

NRCD NRCV

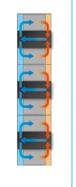
NRCD		0100	0200	0260	0300	0400	0450			
			Aire int	terior 30°C - 35	% / Aire exteri	or 35°C				
Potencia frigorífica	kW	12.4	21.8	26.1	29.4	41.3	46.2			
SHR		1	0.91	1	0.82	1	0.99			
EER		3.9	2.89	3.46	2.55	3.59	3.18			
Potencia absorbida total	kW	3.4	8.2	8.1	12.4	13.1	16.1			
		Aire interior 35°C - 30% / Aire exterior 35°C								
Potencia frigorífica	kW	13.1	23.6	28.6	31.6	45.5	50.1			
SHR		1	0.95	1	0.85	1	1			
EER		4.04	3.07	3.75	2.67	3.85	3.33			
Potencia absorbida total	kW	3.5	8.4	8.2	12.7	13.4	16.6			
Caudal de aire nominal	m³/h	2700	4000	5000	4250	9000	9000			
Núm. de circuitos		1	1	1	1	1	1			
N. di compressori		1	1	1	1	1	1			
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	64	66	60	67	7	3			
Dimensiones [LxHxA]	mm	300x200	00x1200	600 x2000 x1200	300 x2000 x1200	600x20	00 x 1200			
Alimentación eléctrica	V/ph/Hz	230/1/50			400/3+N/50					

NRCV		0140	0240	0330			
		Aire interior 30°C - 35% / Aire exterior 35°C					
Potencia frigorífica	kW	13.3	24.6	34.6			
SHR		1	1	0.88			
EER		4.06	3.17	3.1			
Potencia absorbida total	kW	4.1	9.1	13.1			
		Aire interior 35°C - 30% / Aire exterior 35°C					
Potencia frigorífica	kW	14.5	26.9	37.4			
SHR		1	1	0.91			
EER		4.36	3.36	3.3			
Potencia absorbida total	kW	4.1	9.3	13.3			
Caudal de aire nominal unidad interna	m³/h	3100	5300	5300			
Caudal de aire nominal unidad externa	m³/h	6400	9300	16300			
Núm. de circuitos		1	1	1			
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	62	63				
Lp @ Nominal rpm; dist.=10 m Q=2	dB(A)	46	46	46			
Dimensiones unidad interna [LxHxA]	mm	300x2000x1200		300x2000x1200			
Dimensiones unidad externa [LxHxA]	mm	1250x460x882	1565x605x1275	1965x950x1322			
Alimentación eléctrica unidad interna	V/ph/Hz	230/1/50					
Alimentación eléctrica unidad externa	V/ph/Hz	230/1/50	400/3+N/50	400/3+N/50			

Los HRCC son rack cooler por agua enfriada. Son la solución ideal para la refrigeración de armarios rack en Data Centers donde se requiere **un control preciso de los parámetros** termohigrométricos ambiente 24 horas al día. Son aptos para ser integrados en sistemas por agua enfriada con enfriadoras Free Cooling, dada la posibilidad de hacer funcionar estos acondicionadores también con temperaturas del aqua más altas con respecto a los acondicionadores convencionales de 7/12°C o 10/15°C. El diseño interior y la elección de los componentes están destinados a obtener altos niveles **de eficiencia energética** y a qarantizar continuidad de servicio, siendo el segundo requisito fundamental en este tipo de aplicación de alta/muy alta densidad de potencia.

Configuración In-Rack o In-Row

La gama HRCC se presenta en dos configuraciones diferentes dependiendo del modo de refrigeración de los armarios rack, que se puede obtener mediante la creación de pasillos calientes y fríos en el Data Center o a través de la compartimentación y la refrigeración localizada.


- Control avanzado microprocesado, programable con display LCD
- Control de la humedad mediante deshumidificación y humidificación (opcional)
- Modulación de la velocidad de los ventiladores de acuerdo con la carga térmica (∆T constante)
- Filtros de aire clase G3 de serie. Filtros de aire G4, M5, F7 (opcionales)
- Doble alimentación eléctrica con interruptor automático (opcional)
- Modulación de la ventilación con caudal constante (airflow control) o con sobrepresión disponible constante (Δp control) (opcionales)
- Función de lectura instantánea del caudal de agua, de las temperaturas de entrada y salida del agua, o de la capacidad frigorífica suministrada (opcionales)

IN RACK

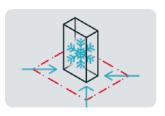
IN RACK: En esta configuración se genera un circuito cerrado entre el rack cooler y el armario rack. El aire puede ser aspirado y enviado por la derecha, izquierda o por ambas

IN ROW

IN ROW: En esta configuración se libera aire frío en el «pasillo frío» hacia cada armario rack y el aire caliente del entorno circundante es aspirado por el rack cooler. El aire puede ser enviado de manera frontal, por la derecha o por la izquierda.

Ventilación EC

Los ventiladores PLUG EC, de serie en toda la gama, se pueden regular mediante diferentes lógicas: caudal, sobrepresión ΔP y ΔT constantes. Su regulación precisa permite un uso eficiente de la energía eléctrica que se consume en la ventilación y la consiguiente reducción del PUE **del sistema.** La regulación de la velocidad con rango ampliado se realiza mediante el protocolo Modbus. Por último, la función «velocidad de emergencia» permite que el ventilador funcione incluso en caso de fallo de funcionamiento del microprocesador.


Ventiladores sustituibles en caliente

Para limitar al máximo la parada de la máquina, la sustitución de un ventilador defectuoso puede realizarse sin necesidad de apagar la unidad, gracias al uso de la rejilla de protección y de los conectores para la parte de alimentación y de control. La sustitución de los ventiladores se convierte así en una operación de mantenimiento ordinario.

Seguridad en la sala de servidores

Todos los modelos de la gama incorporan de serie baterías de intercambio térmico con tratamiento hidrofílico. El recubrimiento particular, junto con una elección adecuada de la velocidad de paso del flujo de aire, favorece la recogida de los condensados durante el proceso de deshumidificación, evitando el arrastre de gotas hacia el interior y exterior de la unidad.

Alta densidad de potencia

El diseño interior y la distribución particular de los componentes permiten tener uno o dos intercambiadores térmicos de aletas con una superficie de intercambio térmico grande. El footprint de la unidad sigue siendo reducido, aprovechando al máximo el espacio ocupado en la sala de servidores.

Cuadro eléctrico deslizante

Para los tamaños con una estructura de 300 mm de ancho, el cuadro eléctrico está diseñado para ocupar el menor espacio posible y no interferir en la distribución del aire en toda la altura útil de la unidad. Por lo tanto, se ha realizado la versión deslizante de corredera, sin impedir la accesibilidad durante las operaciones de primera puesta en marcha y de mantenimiento extraordinario. Además la configuración evita enredos de cables.

HRCC		0200	0250	0450	0510		
		Aire interior 30°C - 35% / Agua refrigerada 10°C - 15°C					
Potencia frigorífica	kW	20.1	27.7	46.2	57		
SHR		1	1	1	1		
EER		43.54	38.35	31.1	37.27		
		Aire interior 35°C - 30% / Agua refrigerada 15°C - 20°C					
Potencia frigorífica	kW	20.2	27.8	46.4	57.2		
SHR		1	1	1	1		
EER		43.69	38.44	31.21	37.37		
Caudal de aire nominal	m³/h	4000	5300	9000	11000		
Potencia absorbida por los ventiladores	kW	0.5	0.7	1.5			
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	62	65	70	67		
Dimensiones [LxHxA]	mm	300x200	00x1200	600x2000x1200			
Alimentación eléctrica	V/ph/Hz	230/	1/50	400/3+N/50			

También disponibles con alimentación de 60 Hz.

CONDENSADORES REMOTOS

Los condensadores remotos HiRef son unidades externas que se pueden combinar con unidades internas condensadas por aire, como los armarios de las series A – D y los rack cooler NRCD. **HiRef ofrece una amplia gama de condensadores** adecuados para trabajar con los refrigerantes R410A, R134a, R454B, R407C. Los condensadores, combinados con unidades de dos circuitos, están disponibles con un solo circuito frigorífico **para una máxima fiabilidad y redundancia del sistema**, o con dos circuitos frigoríficos **para reducir el espacio de instalación y los costes.** Los

modelos están fabricados con un bastidor de aleación de aluminio y chapa galvanizada: una solución ideal para garantizar **una alta resistencia a la corrosión, la protección de los tubos de cobre y la solidez.** Los paneles exteriores son de chapa galvanizada, con pintura de poliéster **resistente a la corrosión y a los rayos UV**.

- Alimentación monofásica de 230 V o trifásica de 400 V
- Alimentación desde la unidad interna HiRef (de serie) o independiente (a pedido)

Funcionamiento silencioso

Los condensadores remotos también están disponibles en las versiones **low noise**, de bajo nivel de ruido, **ideales en zonas donde debe mantenerse un alto nivel de confort acústico.**

Grupo de aletas

Los intercambiadores térmicos de aletas se fabrican con tubos de cobre y aletas de aluminio turbulenciadas u onduladas, según el modelo. La distancia estándar entre las aletas es de 1,8 - 2 - 2,1 mm dependiendo del modelo y permite una alta eficiencia de intercambio térmico sin comprometer la facilidad de la limpieza ordinaria.

Personalización

A pedido, las unidades se pueden personalizar para satisfacer las necesidades de diseño del cliente. Entre las diferentes opciones es posible elegir:

- tratamientos especiales del intercambiador térmicos de aletas, incluido el tratamiento epoxí que permite una buena resistencia a los entornos corrosivos, o aletas de cobre para la instalación en entornos marinos;
- paso de las aletas más grande para reducir la suciedad y facilitar la limpieza en entornos arenosos;
- condensadores especiales canalizables para ser instalados en lugares cerrados.

Versatilidad

Como alternativa a la instalación vertical con flujo de aire horizontal, de serie, **es posible elegir la instalación horizontal con flujo de aire ascendente**, que se puede realizar mediante un kit de patas a solicitar por separado.

Eficiencia

Según el modelo, las unidades incorporan ventiladores axiales con un diámetro de 350 – 450 – 500 – 630 mm. Los ventiladores de 4 o 6 polos pueden regularse mediante un regulador de revoluciones desde la unidad interna o montado en la máquina. Las unidades también están disponibles con ventiladores EC de alta eficiencia que permiten un bajo consumo de funcionamiento y un control fiable de la temperatura de condensación gracias a la regulación electrónica de la velocidad.

DRY COOLER

Los Dry Coolers HiRef son unidades externas que se pueden combinar con unidades internas condensadas por aqua, como los armarios de las series W - F - K. HiRef ofrece una amplia gama de Dry Coolers aptos para trabajar con agua con hasta el 60% de glicol. Los modelos están fabricados con un bastidor de aleación de

aluminio y chapa galvanizada: una solución ideal para garantizar resistencia a la corrosión, protección de los tubos de cobre y solidez. Los paneles externos son de chapa galvanizada, con pintura de poliéster resistente a la corrosión y a los rayos UV.

- Alimentación monofásica de 230 V o trifásica de 400 V
- Alimentación desde la unidad interna HiRef (de serie) o independiente (a pedido)

Grupo de aletas

Funcionamiento silencioso

Los Dry Coolers también están disponibles en las versiones low noise, de bajo nivel de ruido, ideales en zonas donde debe mantenerse un alto nivel de confort acústico.

Eficiencia

Según el modelo, las unidades incorporan ventiladores axiales con un diámetro de 350 - 500 - 630 - 800 mm. Los ventiladores de 6 u 8 polos pueden regularse mediante un regulador de revoluciones desde la unidad interna o montado en la máquina. Las unidades también están disponibles con ventiladores EC de alta eficiencia que permiten un bajo consumo de funcionamiento y un control fiable de la temperatura de condensación gracias a la regulación electrónica de la velocidad.

CHiRef

ITALIA (SEDE)

HiRef S.p.A. Viale Spagna, 31/33 - 35020 Tribano (PD) Italy Tel. +39 049 9588511 - Fax +39 049 9588522 - info@hiref.it

ESPAÑA

HG Solutions C/entença, 332-334, 6o3a - 08029 Barcelona Tel. +34 935 344213 - info@hgsolutions.es

MÉXICO

HiRef México

Tel. +52 551 6442177 - info@hiref.com.mx

HiRef S.p.A. se reserva el derecho de realizar en cualquier momento modificaciones necesarias y mejoras a sus productos sin aviso previo.

Prohibida la reproducción, total o parcial, de este catálogo sin la autorización por escrito de HiRef S.p.A.

© Copyright HiRef S.p.A. 2024