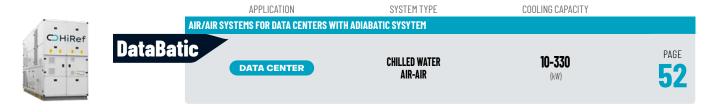
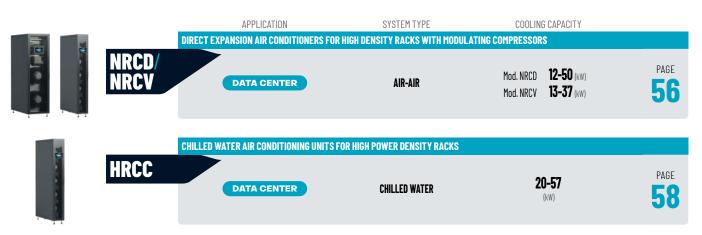


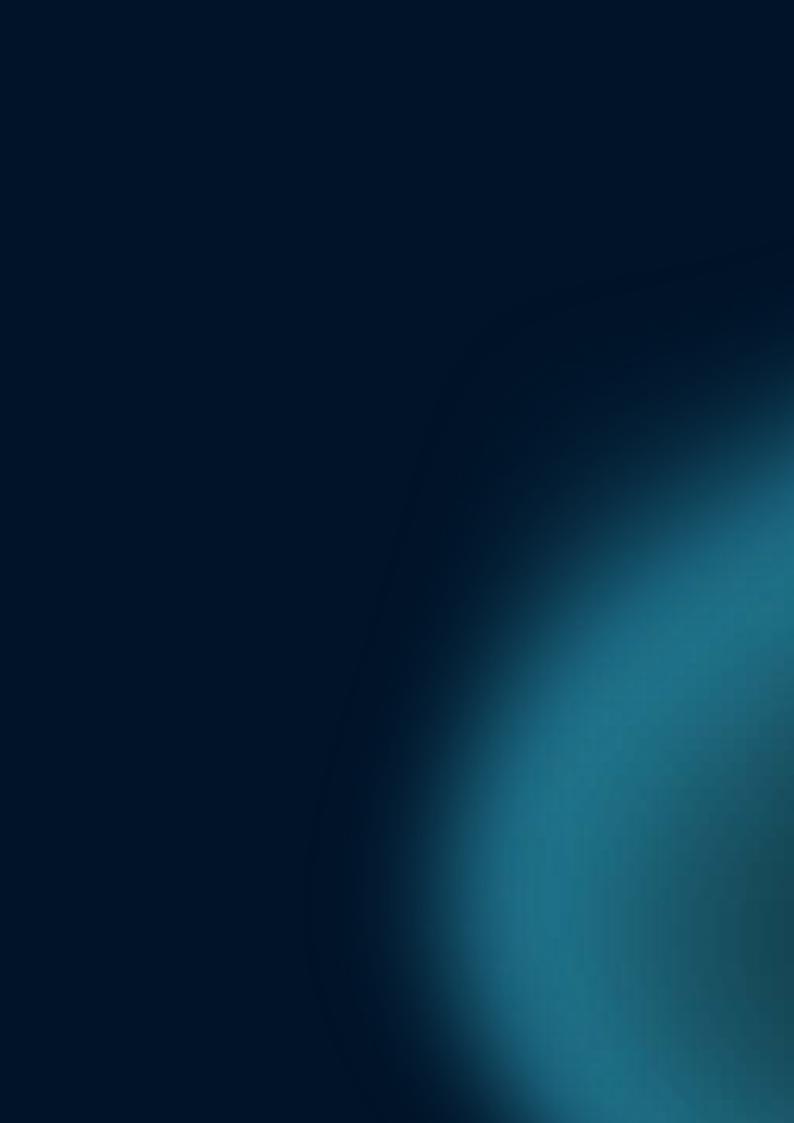
CATALOGUE CCAC IEC HDC

Perimeter-mounted units

Perimeter-mounted units


	_	APPLICATION	SYSTEM TYPE	COOLING CAPACITY	
COMPANY (SEE	TRF DX F	DATA CENTER INDUSTRIAL	TERS WITH INDIRECT FREE-COOLING	23-150 (kW)	PAGE 28
Control (S)	TRF DX D/K/Q	DATA CENTER INDUSTRIAL	FOR DATA CENTERS Mod. D Air-Air Mod. Q/K Air-Water	Mod. D 23-149 (kW) Mod. K 23-152 (kW) Mod. Q 27-170 (kW)	PAGE 30
	JREF CW Radial	DATA CENTER INDUSTRIAL	S FOR DATA CENTERS CHILLED WATER	15-33 (kW)	PAGE 34
	JREF DX A	DATA CENTER INDUSTRIAL	S FOR DATA CENTERS AIR-AIR	7-25 (kW)	PAGE 36
Control (C)	JREF DX W/Z Radial	DATA CENTER INDUSTRIAL	NITS FOR DATA CENTERS AIR-WATER	Mod. W 7-24 (kW) Mod. Z 7-27 (kW)	PAGE 38
	JREF CW Centrifugal	DATA CENTER INDUSTRIAL	S FOR DATA CENTERS CHILLED WATER	7-24 (kW)	PAGE 40
Combine Sign	JREF DX A	DATA CENTER INDUSTRIAL	S FOR DATA CENTERS AIR-AIR	7-24 (kW)	PAGE 42
South	JREF DX W/Z Centrifugal	DATA CENTER INDUSTRIAL	NITS FOR DATA CENTERS AIR-WATER	Mod. W 7-24 (kW) Mod. Z 7-28 (kW)	PAGE 44
Jack Control C	FANWALL	ANWALL AIR CONDITIONERS CHILLED WAS	TER OR DIRECT EXPANSION VERSION CHILLED WATER	ONS FOR HIGH DENSITY HYPERSCALE DA' 45-461 (KW)	PAGE 46


Perimeter-mounted units



Evaporative air conditioner air-to-air

High Density Cooling

CHiRef

PERIMETER-MOUNTED UNITS

Platform TRF Evolution

Inspired by the best of TREF Revolutionary design

Efficiency, flexibility, reduced footprint, optimization of internal layout

TRF Evolution is the new family of HiRef perimeter-mounted cabinets designed for data centre air conditioning. It brings together in a single and revolutionary family the many product ranges already on offer, from chilled-water to direct expansion units. Units of the TRF Evolution platform have everything needed to provide the most efficient Data Center cooling solution, ensuring reliability, precise control of thermo-hygrometric conditions and the flexibility to adapt to different working conditions. The depth has been increased to 890 mm and 960 mm, with a finned-coil exchanger

30% larger in the NRG and TRF DX versions and 16% larger in the TRF CW, compared to the units of previous generations. There is a rise in specific capacity (kW/Sq.m) and efficiency, thanks to a next-generation fan that increases performance by 15%. Each HiRef unit is also customizable in the co-design phase with the client or the designer, depending on the specific application, making solutions modular and more efficient on a case-by-case basis.

CHILLED WATER

Chilled water units are available in several configurations and versions:

- broad range of cooling capacity: from 40 kW for TRF CW units to 350 kW for TRF CF units;
- air flow: several air flow configurations for the TRF CW models and fan module configurations for the TRF CS and TRF CF units are possible;

 hydronic circuit: the configurations A, B and C have been developed to be able to choose the best option for the Data Center's actual operating conditions:

Geometry "A"

Designed to work with high water flow rates and $\Delta T = 5^{\circ}C$. Ideal for existing solutions

Geometry "B"

Designed to work with moderate water flow rates and ΔT = 8°C. Ideal for next-generation Data Centers

Geometry "C"

Designed to work with low water flow rates and $\Delta T = 12^{\circ}C$. Ideal for the very latest Data Centers

Adjustment

All TRF units are fitted with water flow control valves. In addition to the 2-or 3-way modulating valves, pressure-independent regulating valves can be fitted on request. These offer a host of benefits, including reduced commissioning costs, greater accuracy and stability in regulating cooling capacity.

Efficiency

Reduced footprint

Direct expansion

The TRF Evolution product family also includes the TRF DX and NRG **direct expansion** ranges: the former mounts on-off compressors on the whole range, the latter **inverter-driven modulating compressors**. The use of inverter technology allows the units in the NRG range to take their place among the **most energy-efficient and high-precision air-conditioning solutions**.

Depending on system requirements, it is possible to choose between an air- or water-cooled condensing unit during the offer phase. With **Dual Cooling** complete **redundancy** is possible thanks to the additional chilled water coil. Finally, with the **indirect water Free-Cooling** version, **energy consumption** can be minimized, taking advantage of low room temperatures to chill water without using the compressor.

NRG

PERIMETER MOUNTED UNITS FOR DATA CENTRES WITH MODULATING COMPRESSORS

TRF DX

PERIMETER MOUNTED UNITS FOR DATA CENTRES WITH ON-OFF COMPRESSORS

TRF CW

CHILLED WATER
PERIMETER-MOUNTED UNITS
FOR DATA CENTERS

TRF CS

CHILLED WATER
PERIMETER-MOUNTED
CONDITIONERS FOR
DATA CENTERS WITH
UNDERFLOOR
FANS - SLIM EDITION

TRF CF

CHILLED WATER
PERIMETER-MOUNTED
CONDITIONERS FOR
DATA CENTERS WITH
UNDERFLOOR FANS

The new chilled water air conditioners of the TRF CW series are particularly suitable for IT facilities where **temperature and air flow need to be continuously monitored**. The components of the TRF CW unit offer the most efficient solution for **Data Center cooling**, ensuring **reliability**, **precise control of thermo-hygrometric conditions** and the **flexibility** to adapt to different working conditions.

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes **routine maintenance easier in full compliance with safety standards.**

Ventilation adjustment

Depending on the air distribution logic in the server room, it is possible to adjust the machine on-board ventilation system to ensure a **constant air flow rate** (airflow control) **or a constant available overpressure** (ΔP control). The latter is particularly useful if a floating floor is used.

Double circuit

Chilled water units are also available with a double circuit. In this version, the supply is via **two different hydraulic circuits** that can offer the **utmost operational continuity if one of the two circuits malfunctions.** Each circuit is equipped with a regulating valve.

- Temperature control through heating and post-heating systems using electric heating elements, additional hot water coil or both
- Humidity control through dehumidification and humidification (optional)
- Fan speed modulation based on thermal load (constant ΔT)
- Hydraulic connections from the bottom of the unit
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Double panelling only on the front doors or on the whole machine (optional)
- Instant reading of water flow rate, water inlet and outlet temperatures, or supplied cooling capacity (optional)

Finned pack coil with hydrophilic coating

All models in the TRF CW range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection and outflow during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Accurate regulation with multiple types of valves

All units in the TRF CW range have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system or with servo motor with spring return. Pressure-independent valves can also be fitted on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.

New design: efficiency, flexibility and optimization of internal layout

Internal spaces have been completely redesigned for **a better distribution of components.**The new internal layout features a

larger pack heat exchanger and a state-of-the-art fan for maximum air flow and efficiency. Following a painstaking dynamic fluid study, the filtering surface has also been expanded, now it is distributed over the entire coil to further reduce air pressure drops.

Ventilation EC 2.0

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT . Their accurate adjustment allows **an efficient use of power for ventilation and a consequent reduction of the system's PUE.** The speed, with extended range, is adjusted via the Modbus protocol. Finally, the "emergency speed" function allows for fan operation **even in the event of microprocessor malfunctions.**

Guaranteed flexibility

With three different types of heat exchangers, each optimised to a specific water ΔT value (difference in water temperature between inlet/outlet), we ensure **high flexibility in adapting to the system or liquid chillers already in operation,** without compromising cooling performance:

- **Geometry A** for $\Delta T = 5^{\circ}C$
- Geometry B or $\Delta T = 8^{\circ}C$
- Geometry C for $\Delta T = 12^{\circ}C$

TRF CW		040	060	070	080	090	100	110	130	170	240
Version A			Air	temperature	24°C - Relat	ive humidity	50% / Water	temperatur	e In 7°C Out 1	2°C	
Cooling capacity SHR EER	kW	38.1 0.86 31.07	58 0.79 39.97	64.4 0.82 33.28	80.8 0.78 37.31	85.3 0.81 34.93	105.5 0.77 40.41	103.1 0.83 33.65	137.2 0.77 40.43	177.2 0.77 36.02	257.1 0.74 34.82
Version A		01107				ive humidity 3					0 1102
Cooling capacity SHR EER	kW	43.3 1 35.36	59.6 0.99 41.06	67.9 1 35.05	80.8 0.99 37.33	89.9 1 36.82	104 0.97 39.84	112.3 1 36.66	133.7 0.99 39.41	172.7 0.99 35.11	236.3 0.94 32.01
Version B			Air	temperature	30°C - Relat	ive humidity 3	55% / Water	temperature	In 10°C Out 1	8°C	
Cooling capacity SHR EER	kW	38.9 1 31.69	55.2 1 38	63.3 1 32.69	74.8 1 34.54	82.4 1 33.73	98.4 1 37.69	104.8 1 34.19	126.3 1 37.2	163.1 1 33.15	229.5 0.96 31.08
Version C			Air	temperature	30°C - Relati	ve humidity 3	5% / Water	temperature	In 10°C Out 2	2°C	
Cooling capacity SHR EER	kW	33.4 1 27.23	49.8 1 34.32	54.4 1 28.1	67.5 1 31.2	73.2 1 30	87.6 1 33.55	90.1 1 29.39	111.8 1 32.94	144.4 1 29.35	210.2 1 28.47
Version A			Air	temperature	35°C - Relati	ve humidity 3	0% / Water	temperature	In 15°C Out 2	20°C	
Cooling capacity SHR EER	kW	43.7 1 35.65	58.6 1 40.36	68.2 1 35.22	80.2 1 37.03	89.3 1 36.57	102.3 1 39.16	112.9 1 36.84	133.9 1 39.46	172.9 1 35.16	237.5 1 32.17
Version B			Air	temperature	35°C - Relati		200/ / Water		In 15°C Out 2	=00	
Cooling capacity					oo o momen	ve numicity a	iu /6 / Water	temperature	III IJ G DUL 2	25°C	
SHR EER	kW	39.1 1 31.89	55 1 37.91	63.4 1 32.74	75.3 1 34.8	82.4 1 33.74	98.1 1 37.56	104.9 1 34.24	125.9 1 37.1	162.6 1 33.06	228.4 1 30.94
*****	kW	1	1 37.91	63.4 1 32.74	75.3 1 34.8	82.4 1	98.1 1 37.56	104.9 1 34.24	125.9 1 37.1	162.6 1 33.06	1
EER	kW	1	1 37.91	63.4 1 32.74	75.3 1 34.8	82.4 1 33.74	98.1 1 37.56	104.9 1 34.24	125.9 1 37.1	162.6 1 33.06	1
Version C Cooling capacity SHR EER Rated air flow Total fan absorbed power	kW m³/h kW	33.9 1 27.67 10700 1.2	1 37.91 Air 50.1 1 34.49 10700 1.5	63.4 1 32.74 temperature 56.5 1 29.17 14500 1.9	75.3 1 34.8 35°C - Relati 67.9 1 31.35 14500 2.2	82.4 1 33.74 ve humidity 3 73.9 1 30.24 18000 2.4	98.1 1 37.56 50% / Water 87.9 1 33.68 18000 2.6	104.9 1 34.24 temperature 91 1 29.7 24000 3.1	125.9 1 37.1 In 15°C Out 2 112.3 1 33.1 24000 3.4	162.6 1 33.06 2 7°C 145.1 1 29.49 18000 4.9	1 30.94 210.6 1 28.52 31000 7.4
Version C Cooling capacity SHR EER Rated air flow	kW m³/h	33.9 1 27.67	1 37.91 Air 50.1 1 34.49 10700 1.5	63.4 1 32.74 temperature 56.5 1 29.17	75.3 1 34.8 35°C - Relati 67.9 1 31.35 14500 2.2	82.4 1 33.74 ive humidity 3 73.9 1 30.24	98.1 1 37.56 60% / Water 87.9 1 33.68 18000 2.6	104.9 1 34.24 temperature 91 1 29.7 24000	125.9 1 37.1 In 15°C Out 2 112.3 1 33.1 24000 3.4 67	162.6 1 33.06 2 7°C 145.1 1 29.49	1 30.94 210.6 1 28.52 31000

Performance data relating to Downflow versions. | Also available with 60 Hz power supply. | Units also available in the models Upflow and Displacement, with the exception of size 240. | Height of model Displacement 2250 mm.

TRF CS is the range of chilled-water air conditioners for high power density computer rooms. The fans of the TRF CS units are positioned in separate housing (so-called FREE FAN solution), to increase the overall cooling capacity of the unit, but not to the detriment of the depth, which remains 890 mm. Great care has gone into every detail, in order to minimize air flow pressure drops and energy consumption of the fans, the only electrical load present in the machine.

FREE FAN solution

The FREE FAN solution with the fans mounted in separate housing frees up space inside the unit and thus increases the surface area of the coil. This results in both an increase in air flow and cooling capacity and a reduction in air pressure drops. The FREE FANsolution increases the refrigerating power of the entire range.

- Temperature control through heating and post-heating systems with electric heating elements (optional)
- Humidity control through dehumidification and humidification (optional)
- Fan speed modulation based on thermal load (constant ΔT)
- Hydraulic connections from the bottom of the unit
- Broad choice of accessories, including plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Double panelling only on the front doors or on the whole machine (optional)
- Instant reading of water flow rate, water inlet and outlet temperatures, or supplied cooling capacity (optional)

Ventilation EC 2.0

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT . Their accurate adjustment allows an efficient use of power for ventilation and a consequent reduction of the system's PUE. Extended range speed adjustment is carried out via Modbus protocol. The

"emergency speed" function allows

for fan operation even in the event

of microprocessor malfunctions.

Accurate regulation with multiple types of valves

All units in the TRF CS range have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system or with servo motor with spring return. Pressure-independent valves can also be fitted on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.

Ventilation adjustment

Depending on the air distribution logic in the server room, it is possible to adjust the machine on-board ventilation system to ensure a **constant air flow rate** (airflow control) **or a constant available overpressure** (ΔP control). The latter is particularly useful if a floating floor is used.

Finned pack coil with hydrophilic coating

All models in the TRF CS range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection and outflow during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Double circuit

Chilled water units are also available with a double circuit. In this version the supply is via two different hydraulic circuits that can offer the utmost operational continuity if one of the two circuits malfunctions. Each circuit is equipped with a regulating valve

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes **routine maintenance easier in full compliance with safety standards.**

TRF CS		045	055	065	075	150	180	200	210
Version A		Air temp	erature 24°	C - Relativ	e humidity	50% / Wat	er tempera	ature In 7°C	Out 12°C
Cooling capacity SHR EER	kW	68.9 0.82 26.92	81.8 0.8 29.21	104.7 0.82 31.38	131.2 0.78 35.17	165.3 0.8 35.68	200.5 0.78 38.28	-	- - -
Version A		Air tempe	erature 30°	C - Relativ	e humidity	35% / Wat	er tempera	ture In 10°(C Out 15°
Cooling capacity SHR EER	kW	72.6 1 28.35	84.8 1 30.26	110.2 1 33.05	131.2 0.99 35.19	172.3 1 37.19	200.6 0.99 38.29	- - -	- - -
Version B		Air tempe	erature 30°	C - Relativ	e humidity	35% / Wat	er tempera	ture In 10°(C Out 18°
Cooling capacity SHR EER	kW	66 1 25.81	79.9 1 28.53	102.8 1 30.82	121.4 1 32.56	157.2 1 33.93	189.4 1 36.15	205.2 1 29.64	242.4 1 31.42
Version C		Air tempe	rature 30°	C - Relativo	humidity	35% / Wate	er tempera	ture In 10°C	Out 22°
Cooling capacity SHR EER	kW	58.2 1 22.73	70.6 1 25.2	88.4 1 26.5	109.7 1 29.41	135.1 1 29.17	167.7 1 32	176.4 1 25.48	218.9 1 28.38
Version A		Air tempe	rature 35°	C - Relative	humidity	30% / Wate	er tempera	ture In 15°C	Out 20°
Cooling capacity SHR EER	kW	72.9 1 28.49	84.9 1 30.3	110.8 1 33.21	130.2 1 34.91	173 1 37.35	199 1 37.98	- - -	- - -
Version B		Air tempe	rature 35°	C - Relativo	humidity	30% / Wate	er tempera	ture In 15°C	Out 23°
Cooling capacity SHR EER	kW	67.8 1 26.48	79.7 1 28.47	103 1 30.87	121.2 1 32.49	157.4 1 33.98	188.9 1 36.05	205.5 1 29.69	241.8 1 31.35

EER		26.48	28.47	30.87	32.49	33.98	36.05	29.69	31.35
Version C		Air tempe	rature 35°	C - Relative	humidity	30% / Wat	er tempera	ture In 15°(C Out 27°C
Cooling capacity	kW	58.8	71	89.3	110.2	136.5	168.5	178.2	220
SHR		1	1	1	1	1	1	1	1
EER		22.97	25.33	26.77	29.55	29.47	32.16	25.75	28.52
Rated air flow	m³/h	15500	15500	23550	23550	36000	36000	47000	47000
Total fan absorbed power	kW	2.6	2.8	3.3	3.7	4.6	5.2	6.9	7.7
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	6	19	66	67	6	8	69	70
Dimensions [LxHxD]	mm	1270x20	000x890	1760x20	000x890	2510x20	000x890	3160x20	000x890
Power supply	V/ph/Hz				400/3	+N/50			

Also available with 60 Hz power supply. I Minimum height with fanmodule 2550 mm.

Extended filter section

Air filters, located on the entire surface of the coil, maximize the filtering section and minimize the unit's air pressure drops.

TRF CF is the range of chilled-water air conditioners for computer rooms with very high power density. As for the TRF CS range, the fans are mounted in separate housing, but in addition units are equipped with two chilled water batteries. With these solutions the cooling capacity is maximized, at the same depth of 960 mm. In-depth fluid dynamic analysis has resulted in the meticulous design of every last constructive detail to minimise air pressure drops and fan power consumption, the only power load in the machine.

FREE FAN solution

The FREE FAN solution with the fans mounted in separate housing frees up space inside the unit and thus increases the surface area of the coil. This results in both an increase in air flow and cooling capacity and a reduction in air pressure drops. The FREE FAN solution increases the refrigerating power of the entire range.

- Temperature control through heating and post-heating systems with electric heating elements (optional)
- Humidity control through dehumidification and humidification (optional)
- Fan speed modulation based on thermal load (constant ΔT)
- Hydraulic connections from the bottom of the unit
- Broad choice of accessories, including plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Double panelling only on the front doors or on the whole machine (optional)
- Instant reading of water flow rate, water inlet and outlet temperatures, or supplied cooling capacity (optional)

Ventilation EC 2.0

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT Their accurate adjustment allows an **efficient use of power for ventilation and a consequent reduction of the system's PUE.** Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation **even in the event**

of microprocessor malfunctions.

Accurate regulation with multiple types of valves

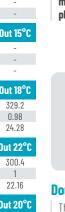
All units in the TRF CS range have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system or with servo motor with spring return. Pressure-independent valves can also be fitted on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.

Ventilation adjustment

The most suitable on-board ventilation system can be chosen based on the air distribution logic in the server room, guaranteeing **a constant flow of air** (airflow control) **or a constant available overlap** (Δp control); the latter is particularly useful when using a floating floor.

Finned pack coil with hydrophilic coating

All models in the TRF CF range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection and outflow during the dehumidification process, preventing any dripping on the inside and outside of the unit.



Chilled water units are also available with a double circuit. In this version the supply is via two different hydraulic circuits that can offer the utmost operational continuity if one of the two circuits malfunctions. Each circuit is equipped with a regulating valve

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes **routine maintenance easier in full compliance with safety standards.**

Double coil

The double coil solution is designed to optimize the internal spaces of the unit, significantly increasing the heat exchange surface and potential refrigerating power.

TRF CF		045	055	065	075	150	180	200	210
Version A		Air temp	erature 24°	°C - Relativ	e humidity	50% / Wat	ter tempera	ature In 7°0	C Out 12°C
Cooling capacity	kW	92.8	111.2	154.5	191.2	234.5	-	-	-
SHR EER		0.77 33.56	0.73 38.75	0.78 26.02	0.74 30.55	0.78 24.78	-	-	-
		33.30	38./3	20.02	30.55	24.70	-	-	-
Version A		Air tempe	erature 30°	C - Relativ	e humidity	35% / Wat	er tempera	ture In 10°	C Out 15°C
Cooling capacity	kW	91.1	102.4	154	176.7	233.7	-	-	-
SHR		70.07	0.93	1	0.94	1	-	-	-
EER		32.94	35.68	25.93	28.23	24.7	-	-	-
Version B		Air tempe	erature 30°	C - Relativ	e humidity	35% / Wat	er tempera	ture in 10°	C Out 18°C
Cooling capacity	kW	85.9	97.9	141.8	164.6	219.8	254.3	283.7	329.2
SHR EER		1 31.06	0.95 34.14	23.88	0.98 26.31	23.23	0.97 25.54	1 22.07	0.98 24.28
EEK		31.00	34.14	20.00	20.31	23.23	20.04	22.07	24.20
Version C		Air tempe	rature 30°	C - Relativo	humidity	35% / Wat	er tempera	ture In 10°(C Out 22°C
Cooling capacity	kW	77.6	90.6	127.2	153.2	193	232.5	254.4	300.4
SHR		1	1	1	1	1	1	1	1
EER		28.06	31.59	21.41	24.49	20.4	23.35	19.79	22.16
Version A		Air tempe	rature 35°	C - Relative	humidity	30% / Wat	er tempera	ture In 15°(C Out 20°C
Cooling capacity	kW	91.2	100.5	154.4	173.6	234.2	-	-	-
SHR		1	1	1	1	1	-	-	-
EER		32.99	35.03	25.99	27.75	24.75	-	-	-
Version B		Air tempe	rature 35°	C - Relative	e humidity	30% / Wat	er tempera	ture In 15°	C Out 23°C
Cooling capacity	kW	85.7	96.6	141.7	163.9	219.5	253.2	283.4	327.9
SHR		1	1	1	1	1	1	1	1
EER		30.99	33.68	23.85	26.2	23.2	25.43	22.05	24.18
Version C		Air tempe	rature 35°	C - Relativo	humidity	30% / Wat	er tempera	ture In 15°(C Out 27°C
Cooling capacity	kW	78	89.9	128	153.6	194.2	233	256	301.2
SHR		1	1	1	1	1	1	1	1
EER		28.19	31.35	21.55	24.54	20.53	23.41	19.92	22.22
Rated air flow	m³/h	16500	16500	29000	29000	44000	44000	58000	58000
Total fan absorbed power Lp @ Nominal rpm ; dist.= 2 m Q=2	kW dB(A)	2.8	2.9	5.9	6.3	9.5	10 '3	12.9 74	13.6 75
Lp @ Nominarrpin; dist.= 2 m y=2 Dimensions [LxHxD]	mm	1270×20			000x960		000x960		000x960
Power supply	V/ph/Hz					S+N/50			

Also available with 60 Hz power supply. | Minimum height with fanmodule 2550 mm.

NRG series perimeter-mounted air conditioning units are designed for **high thermal density** IT facilities requiring **accurate hygrothermal parameter control and continuous operation**. The use of inverter-driven compressors, capable of tracking the thermal load with extreme precision, of EC fans (standard), and of electronically controlled lamination valves (standard) also **make it possible to achieve high performance with reduced energy consumption, improving the Data Centre's PUE**. The strength of the new NRG range is **the high cooling density** (KW/m²), obtained thanks to the precise internal design, a frame of just 890 mm in depth, and the careful choice of components.

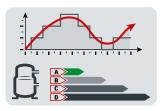
Versatile and flexible range

The following refrigerating configuration options are available:

- NRG A Air cooled with remote condenser.

 NRG W Dry Cooler or water cooled.

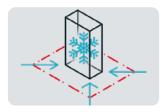
 NRG Z Mains water cooled (15°C).
- NRG F Water cooled and indirect water Free-Cooling.


 NRG D Air cooled with remote condenser and Dual Cooling.
- NRG K Dry-Cooler or water cooled and Dual Cooling.

 NRG Q Mains water cooled (15°C) and Dual Cooling.

The NRG A units are air-condensed perimeter-mounted units of the NRG range; they are widely used for the cooling of Data Centers. The air-condensed solution offers a **simple system design**, thanks to the absence of auxiliary circuits and pumps; **the cooling circuit is managed by the cabinet**, and both the indoor unit and the remote condenser are **easy to install**.

- Refrigerant R410A
- EC Fans
- Scroll inverter compressors
- Electronic expansion valves (optional)
- Advanced programmable microprocessor control with LCD display
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas (optional)
- Humidity control through dehumidification and humidification (optional)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (optional)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Long distance kits for optimal operation in the event of large distances between indoor and outdoor units (on request)


Power modulation

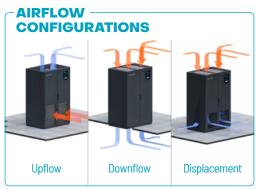
The NRG A units adapt quickly to Data Center cooling requests. Thanks to the inverter-controlled compressor, performance can be modulated to **up to 25%** of the rated value, **thus reducing consumption.** This ensures **continuous operation of the unit** even at low loads, without switching cycles on and off.

Aiming at maximised system efficiency

Design choices include, in addition to the use of electronically controlled expansion valves, the management of variable-speed Scroll compressors and EC (electronically commutated) fans via Modbus. Thanks to these features it is possible to acquire, manage and adjust operating parameters and therefore thermo-hygrometric values in the server room very accurately, with high levels of energy efficiency.

Maximised power density

The internal design and the special arrangement of the components of the TRF Evolution platform, used in the NRG units, have been designed to maximise the exchange surface of the evaporating coil. These characteristics, combined with the use of latest-generation electronic switching EC fans with high air flow rate, have allowed the power density to be increased. The space available in the server room is made the most of and this makes the NRG A units suitable for applications with high thermal load density, typical of latest generation Data Centres.

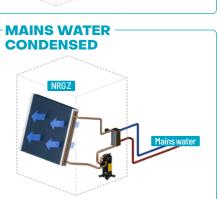


Remote condensers

All units can be combined with HiRef remote condensers, choosing from different combinations to meet all system needs. Oversize remote condensers are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while the compact condensers on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single cooling circuit for maximum reliability and redundancy of the system or with a double cooling circuit, to reduce installation spaces and costs.

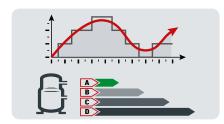
NRG A		0091	0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962	1003	1103
					Air tem	perature	24°C -	Relative	humidi	ty 50 % .	/ Outdoo	r Air Te	mperati	ıre 35°C			
Cooling capacity	kW	9.3	12.3	19.8	23.8	31.3	38.1	44	47.7	56.8	58.2	73.8	77.3	81.4	93.3	109.2	127
SHR		0.89	0.94	1	1	1	0.99	0.93	0.99	0.91	0.99	0.93	0.99	1	0.94	0.87	0.81
EER		3.74	3.71	4	3.99	4.19	3.9	3.46	3.89	3.78	3.85	3.72	3.83	4.21	4.1	4.06	3.61
Total absorbed power	kW	2.7	3.7	6.2	7.2	9.3	11.6	14.5	14.5	17.2	18	23.8	25.1	25.2	28.6	32.8	41.1
			Air temperature 30°C - Relative humidity 35% / Outdoor air Temperature 35°C 13.9 22.5 27 35.5 43.2 48.7 53.7 62.9 65.6 81.9 87.3 92 104.1 119 1 <td< th=""><th></th></td<>														
Cooling capacity	kW	10	13.9	22.5	27	35.5	43.2	48.7	53.7	62.9	65.6	81.9	87.3	92	104.1	119	135.7
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.97
EER		3.94	4.09	4.44	4.42	4.67	4.32	3.67	4.2	4.11	4.23	3.98	4.16	4.65	4.45	4.37	3.79
Total absorbed power	kW	2.7	3.8	6.3	7.4	9.4	11.8	15.1	15	17.5	18.4	24.5	25.9	25.6	29.3	33.1	41.7
							0-							00			
					Air tem	peratur	e 35°C -	Relative	humidi	ty 30%	/ Outdoo	or Air te	mperatı	ire 35°C			
Cooling capacity	kW	10.8	15.2	25	29.9	peraturo 39.2	47. 5	Relative 53.4	humidi 59	68.9	72.3	or Air te 90	mperatu 96.1	101.2	114.3	130.1	147.2
Cooling capacity SHR	kW	10.8	15.2 1		. '											130.1 1	147.2
	kW	10.8 1 4.18			. '	39.2		53.4						101.2	114.3	130.1 1 4.69	
SHR	kW kW	1	1	25 1	29.9 1	39.2 1	47.5 1	53.4 1	59 1	68.9 1	72.3 1	90 1	96.1 1	101.2 1	114.3 1	1	1
SHR EER		1 4.18	1 4.35	25 1 4.86	29.9 1 4.81	39.2 1 5.08	47.5 1 4.66	53.4 1 3.9	59 1 4.48	68.9 1 4.43	72.3 1 4.59	90 1 4.25	96.1 1 4.45	101.2 1 5.02	114.3 1 4.81	1 4.69	1 4.04
SHR EER Total absorbed power	kW	1 4.18 2.8	1 4.35 3.9	25 1 4.86 6.4	29.9 1 4.81 7.4	39.2 1 5.08 9.5	47.5 1 4.66 12	53.4 1 3.9 15.5	59 1 4.48 15.4	68.9 1 4.43 17.8	72.3 1 4.59 18.6	90 1 4.25 25.1	96.1 1 4.45 26.5	101.2 1 5.02 26	114.3 1 4.81 29.6	1 4.69 33.6	1 4.04 42.3
SHR EER Total absorbed power Rated air flow	kW	1 4.18 2.8	1 4.35 3.9 3700	25 1 4.86 6.4	29.9 1 4.81 7.4	39.2 1 5.08 9.5	47.5 1 4.66 12	53.4 1 3.9 15.5	59 1 4.48 15.4	68.9 1 4.43 17.8	72.3 1 4.59 18.6	90 1 4.25 25.1	96.1 1 4.45 26.5	101.2 1 5.02 26 25300	114.3 1 4.81 29.6 25300	1 4.69 33.6 25300	1 4.04 42.3 25300
SHR EER Total absorbed power Rated air flow Number of circuits	kW	1 4.18 2.8	1 4.35 3.9 3700	25 1 4.86 6.4	29.9 1 4.81 7.4	39.2 1 5.08 9.5	47.5 1 4.66 12	53.4 1 3.9 15.5	59 1 4.48 15.4	68.9 1 4.43 17.8	72.3 1 4.59 18.6	90 1 4.25 25.1	96.1 1 4.45 26.5	101.2 1 5.02 26 25300	114.3 1 4.81 29.6 25300	1 4.69 33.6 25300	1 4.04 42.3 25300
SHR EER Total absorbed power Rated air flow Number of circuits Number of inverter compressors	kW	1 4.18 2.8 2150 1	1 4.35 3.9 3700 1 1	25 1 4.86 6.4 8800 1 1	29.9 1 4.81 7.4 8800 1	39.2 1 5.08 9.5 11720 1	47.5 1 4.66 12 11720 1 1	53.4 1 3.9 15.5 11720 1	59 1 4.48 15.4 14300 1	68.9 1 4.43 17.8 14300 1 1	72.3 1 4.59 18.6 17500 1	90 1 4.25 25.1 19900 1	96.1 1 4.45 26.5 23700 1 1	101.2 1 5.02 26 25300	114.3 1 4.81 29.6 25300	1 4.69 33.6 25300 2 1 2	1 4.04 42.3 25300 2
SHR EER Total absorbed power Rated air flow Number of circuits Number of inverter compressors Number of on/off compressors	kW m³/h	1 4.18 2.8 2150 1 1	1 4.35 3.9 3700 1 1	25 1 4.86 6.4 8800 1 1 -	29.9 1 4.81 7.4 8800 1 1	39.2 1 5.08 9.5 11720 1 1 - 71	47.5 1 4.66 12 11720 1 1	53.4 1 3.9 15.5 11720 1 1 -	59 1 4.48 15.4 14300 1 1 - 75 177 x2(68.9 1 4.43 17.8 14300 1 1	72.3 1 4.59 18.6 17500 1 1	90 1 4.25 25.1 19900 1 1 -	96.1 1 4.45 26.5 23700 1 1	101.2 1 5.02 26 25300 2 1 1 1	114.3 1 4.81 29.6 25300	1 4.69 33.6 25300 2 1 2	1 4.04 42.3 25300 2 1 2

Performance data relating to Downflow versions combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm for sizes 0091-0131.

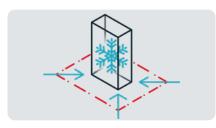


The NRG W units are water-condensed perimeter cabinets. The W series uses Dry Cooler water, the Z series on the other hand uses low temperature mains water or groundwater (15°C). The NRG units of these series are monobloc units inside which the **entire cooling circuit is concentrated**, cooling is via a **brazed plate exchanger made from stainless steel AISI 304.**

The NRG Z units are water-condensed perimeter cabinets. The W series uses Dry Cooler water, the Z series on the other hand uses low temperature mains water or groundwater (15°C). The NRG units of these series are monobloc units inside which the **entire cooling circuit is concentrated**, cooling is via a **brazed plate exchanger made from stainless steel AISI 304.**



- EC Fans
- Scroll inverter compressors
- Electronic expansion valves (optional)
- Advanced programmable microprocessor control with LCD display
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas (optional)
- Humidity control through dehumidification and humidification (optional)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (optional)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)



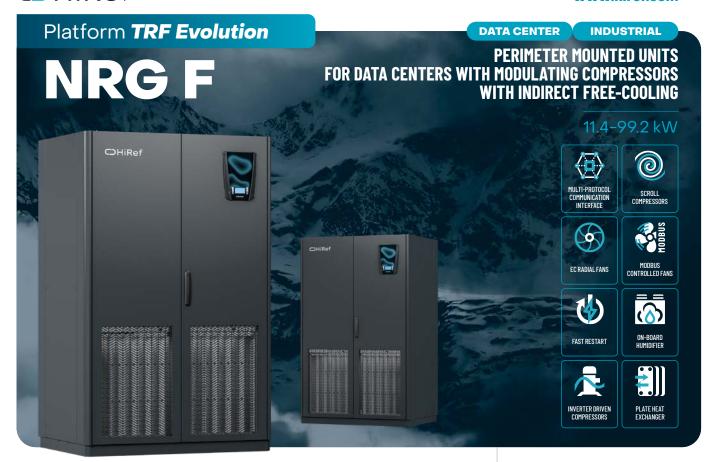
Power modulation

The NRG W/Z units adapt quickly to Data Center cooling requests. Thanks to the inverter-controlled compressor, performance can be modulated to \boldsymbol{up} to 25% of the rated value, thus reducing consumption. This ensures continuous operation of the unit even at low loads, without switching cycles on and off.

Maximised power density

The internal design and the special arrangement of the components of the TRF Evolution platform, used in the NRG units, have been designed **to maximise** the exchange surface of the evaporating coil. These characteristics, combined with the use of latest-generation electronic switching EC fans with high air flow rate, have allowed the **power density** to be increased. The space available in the server room is made the most of and this makes the NRG W units suitable for applications with high thermal load density, typical of latest generation Data Centres.

0091 0131 0201 0251 0301 0381 0441 0501 0551 0641 0701 0801 0852 0962

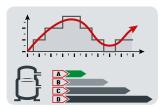


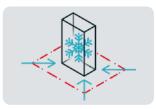
Aiming at maximised system efficiency

Design choices include, in addition to the use of electronically controlled expansion valves, the management of variable-speed Scroll compressors and EC (electronically commutated) fans via Modbus. Thanks to these features it is possible to acquire, manage and adjust operating parameters and therefore thermo-hygrometric values in the server room very accurately, with high levels of energy efficiency.

				Air te	mperatur					ter 40°C -	-45°C			
kW		11.9	20.4	24.5						56.3	71.3	74.8		90.1
			-											0.93
														4.06
kW	3	3.9	5.8	6.8	8.8	11.1	13.5	14	17.1	17.6	23.4	24.5	24.4	28.1
				Air te	mperatur	re 30°C - I	Relative h	umidity 3	5% / Wa	ter 40°C -	- 45°C			
kW	9.5	13.5	23.6	28.2	36.9	42.4	49.3	52.9	60.5	64.1	79.8	85.6	95	101.9
	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	3.34	3.77	5.26	5.14	5.35	4.56	4.2	4.47	4.05	4.35	4.05	4.32	5.18	4.58
kW	3	4	5.7	6.7	8.7	11.1	13.5	14.1	17.2	17.6	23.6	24.7	24.2	28.1
				Air te	mneratur	e 35°C - I	Relative h	umidity 3	in% / Wa	ter 40°C -	- 45°C			
kW	10.3	14.8	26.4									94.8	105.4	112.
		1												1
	3.57	4.11	6.07	5.84	6.16	5.12	4.63	4.95	4.5	4.86	4.43	4.74	5.82	5.07
kW	3.1	4	5.6	6.6	8.5	11	13.6	14.1	17.1	17.5	23.8	25	24	28
m³/h	2150	3700	8800	8800	11720	11720	11720	14300	14300	17500	19900	23700	25300	2530
	1	1	1	1	1	1	1	1	1	1	1	1	2	2
	1	1	1	1	1	1	1	1	1	1	1	1	1	1
													1	1
dB(A)	50	54	1	70	71	7	4	75	7	7		7	6	
mm	600 x1875	x1875	1010×2	000x890	12	70x2000x8	390	1760×20	00x890	2020×21	000x890	25	10x2000x8	390
V/nh/Hz	x600	x600					400/3	+N/50						
17 pii/ ii2	0001	0171	0201	0251	0701	0701			OFF1	00/1	0701	0001	0052	096
	0091	0191	UZUI									0001	0052	090
kW														102.
			-											0.87
						-								6.39
kW	2.3	2.9	4.4	5.2	6.7	8.6	10.5	10.9	13.5	13.9	18.8	19.9	19	21.9
				Air te	mneratu	ro 30°C - 1	Relative L	numidity :	35% / Wa	ter 15°C -	₹0°C			
					inperatu	16 JU U -		· aiiii ai cy			30 C			
kW	10.3	14.9	26	31	40.8	46.6	54.2	58.9	66.9	70.7	88	94.9	105.1	112.4
kW	1	1	1	31 1	40.8 1	46.6 1	54.2 1	58.9 1	66.9 1	70.7 1	88 1	1	1	1
	1 4.8	1 6.04	1 8.89	31 1 8.38	40.8 1 8.92	46.6 1 7.03	54.2 1 6.24	58.9 1 6.84	66.9 1 5.99	70.7 1 6.52	88 1 5.87	1 6.29	1 8.34	7.1
kW	1	1	1	31 1	40.8 1	46.6 1	54.2 1	58.9 1	66.9 1	70.7 1	88 1	1	1	112.4 1 7.1 21.7
	1 4.8	1 6.04	1 8.89	31 1 8.38 4.9	40.8 1 8.92	46.6 1 7.03 8.4	54.2 1 6.24 10.5	58.9 1 6.84 10.8	66.9 1 5.99 13.4	70.7 1 6.52 13.7 ter 15°C -	88 1 5.87 18.9	1 6.29 20	1 8.34	7.1
	1 4.8 2.3	1 6.04 2.8	1 8.89 4.2	31 1 8.38 4.9 Air te 34.1	40.8 1 8.92 6.4 emperature 44.9	46.6 1 7.03 8.4 re 35°C -	54.2 1 6.24 10.5 Relative P	58.9 1 6.84 10.8 numidity 3	66.9 1 5.99 13.4 50% / Wa 73.5	70.7 1 6.52 13.7 ter 15°C -	88 1 5.87 18.9 • 30°C 96.6	1 6.29 20 104.2	1 8.34 18.5	1 7.1 21.7
kW	1 4.8 2.3	1 6.04 2.8 16.5	1 8.89 4.2 28.7	31 1 8.38 4.9 Air te 34.1	40.8 1 8.92 6.4 emperature 44.9	46.6 1 7.03 8.4 re 35°C -	54.2 1 6.24 10.5 Relative h 59.9	58.9 1 6.84 10.8 numidity 3	66.9 1 5.99 13.4 50% / Wa 73.5	70.7 1 6.52 13.7 ter 15°C - 78.2 1	88 1 5.87 18.9 - 30°C 96.6 1	1 6.29 20 104.2	1 8.34 18.5 115.6	1 7.1 21.7 124
kW kW	1 4.8 2.3 11.1 1 5.14	1 6.04 2.8 16.5 1 6.74	1 8.89 4.2 28.7 1 10.68	31 1 8.38 4.9 Air te 34.1 1 9.85	40.8 1 8.92 6.4 emperatur 44.9 1 10.53	46.6 1 7.03 8.4 re 35°C - 51.6 1 8.06	54.2 1 6.24 10.5 Relative h 59.9 1 6.98	58.9 1 6.84 10.8 numidity 3 65 1 7.7	66.9 1 5.99 13.4 50% / Wa 73.5 1 6.69	70.7 1 6.52 13.7 ** ter 15°C - 78.2 1 7.39	88 1 5.87 18.9 • 30°C 96.6 1 6.4	1 6.29 20 104.2 1 6.88	1 8.34 18.5 115.6 1 9.64	1 7.1 21.7 21.7 124 1 8.07
kW kW	1 4.8 2.3 11.1 1 5.14 2.3	1 6.04 2.8 16.5 1 6.74 2.8	1 8.89 4.2 28.7 1 10.68 3.9	31 1 8.38 4.9 Air te 34.1 1 9.85 4.7	40.8 1 8.92 6.4 emperatur 44.9 1 10.53 6.1	46.6 1 7.03 8.4 re 35°C - 51.6 1 8.06 8.2	54.2 1 6.24 10.5 Relative h 59.9 1 6.98 10.4	58.9 1 6.84 10.8 numidity 3 65 1 7.7 10.7	66.9 1 5.99 13.4 30% / Wa 73.5 1 6.69 13.2	70.7 1 6.52 13.7 tter 15°C - 78.2 1 7.39 13.5	88 1 5.87 18.9 • 30°C 96.6 1 6.4	1 6.29 20 104.2 1 6.88 20.1	1 8.34 18.5 115.6 1 9.64 17.9	1 7.1 21.5 124 1 8.0; 21.3
kW kW	1 4.8 2.3 11.1 1 5.14 2.3 2150	1 6.04 2.8 16.5 1 6.74 2.8 3700	1 8.89 4.2 28.7 1 10.68 3.9 8800	31 8.38 4.9 Air te 34.1 1 9.85 4.7	40.8 1 8.92 6.4 emperatur 44.9 1 10.53 6.1	46.6 1 7.03 8.4 re 35°C - 51.6 1 8.06	54.2 1 6.24 10.5 Relative h 59.9 1 6.98	58.9 1 6.84 10.8 numidity 3 65 1 7.7	66.9 1 5.99 13.4 50% / Wa 73.5 1 6.69	70.7 1 6.52 13.7 ** ter 15°C - 78.2 1 7.39	88 1 5.87 18.9 • 30°C 96.6 1 6.4	1 6.29 20 104.2 1 6.88	1 8.34 18.5 115.6 1 9.64 17.9 25300	1 7.1 21.5 124 1 8.05 21.3 2530
kW kW	1 4.8 2.3 11.1 1 5.14 2.3 2150 1	1 6.04 2.8 16.5 1 6.74 2.8 3700	28.7 1 10.68 3.9 8800	31 1 8.38 4.9 Air te 34.1 1 9.85 4.7 8800	40.8 1 8.92 6.4 emperatur 44.9 1 10.53 6.1 11720	46.6 1 7.03 8.4 re 35°C - 51.6 1 8.06 8.2 11720	54.2 1 6.24 10.5 Relative I 59.9 1 6.98 10.4 11720 1	58.9 1 6.84 10.8 numidity 5 65 1 7.7 10.7	66.9 1 5.99 13.4 30% / Wa 73.5 1 6.69 13.2	70.7 1 6.52 13.7 ter 15°C - 78.2 1 7.39 13.5	88 1 5.87 18.9 -30°C 96.6 1 6.4 19	1 6.29 20 20 104.2 1 6.88 20.1 23700	1 8.34 18.5 115.6 1 9.64 17.9 25300 2	1 7.1 21.7 124 1 8.03 21.3 2530 2
kW kW	1 4.8 2.3 11.1 1 5.14 2.3 2150 1	1 6.04 2.8 16.5 1 6.74 2.8 3700	1 8.89 4.2 28.7 1 10.68 3.9 8800	31 8.38 4.9 Air te 34.1 1 9.85 4.7	40.8 1 8.92 6.4 emperatur 44.9 1 10.53 6.1	46.6 1 7.03 8.4 re 35°C - 51.6 1 8.06 8.2	54.2 1 6.24 10.5 Relative h 59.9 1 6.98 10.4	58.9 1 6.84 10.8 numidity 3 65 1 7.7 10.7	66.9 1 5.99 13.4 30% / Wa 73.5 1 6.69 13.2	70.7 1 6.52 13.7 tter 15°C - 78.2 1 7.39 13.5	88 1 5.87 18.9 • 30°C 96.6 1 6.4	1 6.29 20 104.2 1 6.88 20.1	1 8.34 18.5 115.6 1 9.64 17.9 25300	1 7.1 21.5 124 1 8.05 21.3 2530
kW kW kW m ³ /h	1 4.8 2.3 11.1 1 5.14 2.3 2150 1	1 6.04 2.8 16.5 1 6.74 2.8 3700 1 1	28.7 1 10.68 3.9 8800 1 1	31 1 8.38 4.9 Air te 34.1 1 9.85 4.7 8800 1	40.8 1 8.92 6.4 emperatur 44.9 1 10.53 6.1 11720 1 1	46.6 1 7.03 8.4 re 35°C - 51.6 1 8.06 8.2 11720 1	54.2 1 6.24 10.5 Relative b 59.9 1 6.98 10.4 11720 1	58.9 1 6.84 10.8 numidity; 65 1 7.7 10.7 14300 1 1	66.9 1 5.99 13.4 73.5 1 6.69 13.2 14300 1	70.7 1 6.52 13.7 ter 15°C - 78.2 1 7.39 13.5 17500 1	88 1 5.87 18.9 -30°C 96.6 1 6.4 19	1 6.29 20 104.2 1 6.88 20.1 23700 1	1 8.34 18.5 115.6 1 9.64 17.9 25300 2 1	1 7.1 21.5 124 1 8.00 21.3 2530 2
kW kW	1 4.8 2.3 11.1 1 5.14 2.3 2150 1 1 - 50	1 6.04 2.8 16.5 1 6.74 2.8 3700 1 1 1	28.7 1 10.68 3.9 8800 1 1	31 1 8.38 4.9 Air te 34.1 1 9.85 4.7 8800	40.8 1 8.92 6.4 emperatur 44.9 1 10.53 6.1 11720	46.6 1 7.03 8.4 re 35°C - 51.6 1 8.06 8.2 11720 1	54.2 1 6.24 10.5 Relative I 59.9 1 6.98 10.4 11720 1	58.9 1 6.84 10.8 numidity 5 65 1 7.7 10.7	66.9 1 5.99 13.4 73.5 1 6.69 13.2 14300 1	70.7 1 6.52 13.7 ter 15°C - 78.2 1 7.39 13.5	88 1 5.87 18.9 -30°C 96.6 1 6.4 19	1 6.29 20 104.2 1 6.88 20.1 23700 1	1 8.34 18.5 115.6 1 9.64 17.9 25300 2	1 7.1 21.5 124 1 8.00 21.3 2530 2
kW kW kW m ³ /h	1 4.8 2.3 11.1 1 5.14 2.3 2150 1 1 - 50 600 x1875	1 6.04 2.8 16.5 1 6.74 2.8 3700 1 1 - 54 900 x1875	1 8.89 4.2 28.7 1 10.68 3.9 8800 1	31 1 8.38 4.9 Air te 34.1 1 9.85 4.7 8800 1	40.8 1 8.92 6.4 emperatur 44.9 1 10.53 6.1 11720 1 1	46.6 1 7.03 8.4 re 35°C - 51.6 1 8.06 8.2 11720 1	54.2 1 6.24 10.5 Relative ! 59.9 1 6.98 10.4 11720 1 1	58.9 1 6.84 10.8 numidity 3 65 1 7.7 10.7 14300 1 1	66.9 1 5.99 13.4 73.5 1 6.69 13.2 14300 1	70.7 1 6.52 13.7 ter 15°C - 78.2 1 7.39 13.5 17500 1 1	88 1 5.87 18.9 -30°C 96.6 1 6.4 19	1 6.29 20 104.2 1 6.88 20.1 23700 1 1	1 8.34 18.5 115.6 1 9.64 17.9 25300 2 1	1 7.1 21.5 124 1 8.05 21.3 2530 2 1 1
kW kW kW m ³ /h	1 4.8 2.3 11.1 1 5.14 2.3 2150 1 1 50 600	1 6.04 2.8 16.5 1 6.74 2.8 3700 1 1 - 54 900	1 8.89 4.2 28.7 1 10.68 3.9 8800 1	31 1 8.38 4.9 Air te 34.1 1 9.85 4.7 8800 1 1	40.8 1 8.92 6.4 emperatur 44.9 1 10.53 6.1 11720 1 1	46.6 1 7.03 8.4 re 35°C - 51.6 1 8.06 8.2 11720 1 1 - 7	54.2 1 6.24 10.5 Relative ! 59.9 1 6.98 10.4 11720 1 1	58.9 1 6.84 10.8 10.8 10.8 10.8 10.7 10.7 14300 1 1 1 1 1 1 1 1 1 1 1 1 1	66.9 1 5.99 13.4 30% / Wa 73.5 1 6.69 13.2 14300 1 1	70.7 1 6.52 13.7 ter 15°C - 78.2 1 7.39 13.5 17500 1 1	88 1 5.87 18.9 30°C 96.6 1 6.4 19 19900 1	1 6.29 20 104.2 1 6.88 20.1 23700 1 1	1 8.34 18.5 115.6 1 9.64 17.9 25300 2 1	1 7.1 21.7 124 1 8.03 21.3 2530 2 1 1
	kW kW kW kW m ³ /h	0.85 3.15 3 3 3 3 3 3 4 4 3 3	0.85 0.95 3.15 3.37 3.9	Name	kW 8.8 11.9 20.4 24.5 0.85 0.95 1 1 3.15 3.37 4.43 4.38 kW 3 3.9 5.8 6.8 Air te kW 9.5 13.5 23.6 28.2 1 1 1 1 1 3.34 3.77 5.26 5.14 5.7 6.7 Air te kW 10.3 14.8 26.4 31.3 1	kW 8.8 11.9 20.4 24.5 32.1 0.85 0.95 1 1 1 1 3.15 3.37 4.43 4.38 4.58 kW 3 3.9 5.8 6.8 8.8 Air temperatur kW 9.5 13.5 23.6 28.2 36.9 1 1 1 1 1 1 1 kW 3.34 3.77 5.26 5.14 5.35 8.7 Air temperatur kW 10.3 14.8 26.4 31.3 41.3 1 1 1 1 1 1 4 5.6 6.6 8.5 m³/h 2150 3700 8800 8800 11720 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ref Section Ref Ref	kW 8.8 11.9 20.4 24.5 32.1 37.1 44.1 0.85 0.95 1 1 1 0.98 0.91 3.15 3.37 4.43 4.38 4.58 3.97 3.77 kW 3 3.9 5.8 6.8 8.8 11.1 13.5 Air temperature 30°C - Relative h kW 9.5 13.5 23.6 28.2 36.9 42.4 49.3 1 1 1 1 1 1 1 1 kW 3 4 5.7 6.7 8.7 11.1 13.5 Air temperature 35°C - Relative h kW 10.3 14.8 26.4 31.3 41.3 47.1 54.6 h 1 <td> Ref</td> <td> RW</td> <td>kW 8.8 11.9 20.4 24.5 32.1 37.1 44.1 46.3 54.3 56.3 0.85 0.95 1 1 1 0.98 0.91 0.98 0.91 0.98 kW 3 3.9 5.8 6.8 8.8 11.1 13.5 14 17.1 17.6 Air temperature 30°C - Relative humidity 35% / Water 40°C kW 9.5 13.5 23.6 28.2 36.9 42.4 49.3 52.9 60.5 64.1 1</td> <td> RW</td> <td> RW</td> <td> No. No.</td>	Ref	RW	kW 8.8 11.9 20.4 24.5 32.1 37.1 44.1 46.3 54.3 56.3 0.85 0.95 1 1 1 0.98 0.91 0.98 0.91 0.98 kW 3 3.9 5.8 6.8 8.8 11.1 13.5 14 17.1 17.6 Air temperature 30°C - Relative humidity 35% / Water 40°C kW 9.5 13.5 23.6 28.2 36.9 42.4 49.3 52.9 60.5 64.1 1	RW	RW	No. No.

NRG F units are water-condensed perimeter-mounted cabinets that are able to exploit the **effect of indirect water-based Free-Cooling**. The F Series uses Dry Cooler water as both a cooling source for free-cooling and a heat exchange fluid for condensing the cooling circuit. NRG F units are "monobloc" units inside which the **entire cooling circuit** is concentrated. Cooling is via a **brazed plate exchanger made of stainless steel AISI 304.**




- Refrigerant R410A
- EC Fans
- Scroll inverter compressors
- Electronic expansion valves (optional)
- Advanced programmable microprocessor control with LCD display
- Temperature control through heating and post-heating systems with electric heating elements (optional)
- Humidity control through dehumidification and humidification (optional)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (optional)

Power modulation

NRG F units adapt quickly to Data Center cooling requests. Thanks to the inverter-controlled compressor, performance can be modulated to **up to 25%** of the rated value, thus reducing consumption. This ensures **continuous operation of the unit even at low loads**, without switching cycles on and off.

Maximised power density

The internal design and the special arrangement of the components of the TRF Evolution platform, used in the NRG units, have been designed to maximise the exchange

to maximise the exchange surface of the evaporating coil. These characteristics, combined

with the use of latest-generation electronic switching EC fans with high air flow rate, have allowed the **power density to be increased.**The space available in the server room is made the most of and this makes the NRG F units suitable for applications with **high thermal load density,** typical of latest generation

Data Centers.

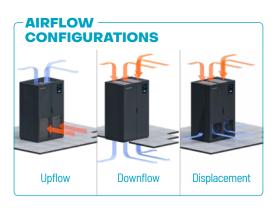
Aiming at maximised system efficiency

Design choices include, in addition to the use of electronically controlled expansion valves, the management of variable-speed Scroll compressors and EC (electronically commutated) fans via Modbus. Thanks to these features it is possible to acquire, manage and adjust operating parameters and therefore thermo-hygrometric values in the server room very accurately, with high levels of energy efficiency.

In periods when the air outside is cooler than the warm air inside the Data Center, the cold water produced by the dry cooler directly feeds the heat exchange coil, which is able to provide a part or all of the required cooling capacity. Before returning to the dry cooler, the water is reused inside the plate exchanger, serving the compressor. The entire process is regulated by a 3-way valve directly controlled by HiRef software, which maximizes the Free-Cooling effect and checks the cooling circuit. In this way the work of the compressor is significantly reduced, and shuts down when a state of Free-Cooling is fully reached, with a significant reduction in the system's PUE.

NRG F		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
			Air tem	erature 2	4°C - Rela	tive humic	lity 50% /	Water 40	°C - 45°C	/ Free-Co	oling wate	r 7°C / Gly	rcol 30%	
Cooling capacity	kW	11.4	19.3	22.9	29.3	33.7	39.9	43.7	51	51.8	64.2	69.7	76.2	82.7
SHR		0.92	1	0.99	1	0.92	0.85	0.95	0.88	0.94	0.84	0.95	0.93	0.87
EER		3.18	4.14	4.05	4.12	3.57	3.41	3.7	3.4	3.5	3.31	3.56	4.08	3.71
Free-Cooling capacity	kW	8.8	22.5	24.6	33.3	37.8	40.8	48	52	56.4	65.8	80.4	80.4	86.8
SHR Free-Cooling		0.93	1	0.9	0.9	0.84	0.81	0.87	0.83	0.87	0.8	0.85	0.85	0.81
Total absorbed power	kW	4	5.8	6.8	8.7	11	13.3	14.1	17.3	17.5	22.1	24.2	23.3	27
			Air temp	erature 3	D°C - Rela	tive humid	lity 35 % /	Water 40	°C - 47°C /	Free-Coo	ling water	12°C / GI	ycol 30%	
Cooling capacity	kW	12.5	21.9	25.7	32.9	37.3	43.1	48.7	55.5	57.8	68.9	77.7	84.2	89.5
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.36	4.6	4.44	4.51	3.85	3.56	3.97	3.59	3.79	3.43	3.82	4.36	3.87
Free-Cooling capacity	kW	8.5	22.6	24	31.5	34.4	35.3	45.5	48	53.4	57.9	73.2	75.2	77.3
SHR Free-Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	4.2	5.9	6.9	8.9	11.3	13.7	14.5	17.7	18	22.8	25	24	27.8
			Air temp	erature 3	5°C - Rela	tive humid	lity 30 % /	Water 40	°C - 47°C /	Free-Coo	ling water	17°C / GI	ycol 30%	
Cooling capacity	kW	13.9	24.3	28.6	36.6	41.6	47.6	54	61.2	63.6	75.9	85.4	93.2	99.2
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.69	5.21	5.01	5.08	4.3	3.9	4.38	3.95	4.17	3.73	4.15	4.86	4.28
Free-Cooling capacity	kW	9	23.5	24.9	33.6	35.5	36.6	48.2	49.7	56.6	58.4	77.5	77.5	80
SHR Free-Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	4.2	5.8	6.8	8.8	11.3	13.8	14.6	17.7	18	23	25.2	23.8	27.8
Rated air flow	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Number of circuits		1	1	1	1	1	1	1	1	1	1	1	2	2
Number of inverter compressors		1	1	1	1	1	1	1	1	1	1	1	1	1
Number of on/off compressors		-	-	-	-	-	-	-	-	-	-	-	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	54		70		7	4	75	7	7	75	76	7	5
Dimensions [LxHxD]	mm	900 x1875 x600	1010×20	00x890	12	70x2000x8	90	1760×20	00x890	2020x2	000x890	25	510x2000x8	90
Power supply	V/ph/Hz							400/3+N/50)					

Performance data relating to Downflow versions. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm for size 0131.



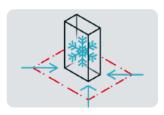
NRG D/K/Q units are Dual Cooling units. They combine the traditional evaporative coil of the cooling circuit with **the cooling effect of chilled water**, coming from an outdoor unit such as a chiller. The use of a dual source guarantees the **continuity of supply to the system** and **the best operational solution in all cases**.

Remote condensers

All NRG D units can be combined with HiRef remote condensers, choosing from different combinations to meet all system needs. Oversize remote condensers are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while the compact condensers on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single coling circuit for maximum reliability and redundancy of the system or with a double cooling circuit, to reduce installation spaces and costs.



📧 Mod. Q e K only


- Refrigerant R410A
- EC Fans
- Scroll inverter compressors
- Electronic expansion valves (optional)
- Advanced programmable microprocessor control with LCD display
- Temperature control through heating and post-heating systems with electric heating elements (optional)
- Humidity control through dehumidification and humidification (optional)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (optional)
- Long distance kits for optimal operation in the case of large distances between indoor and outdoor units (on request)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)

Power modulation

The NRG D/K/Q units adapt quickly to Data Center cooling requests. Thanks to the inverter-controlled compressor, performance can be modulated to **upto 25%** of the rated value, **thus reducing consumption**. This ensures **continuous operation of the unit even at low loads**, without switching cycles on and off.

Maximised power density

The internal design and the special arrangement of the components of the TRF Evolution platform, used in the NRG units, have been designed to maximise the exchange surface of the evaporating coil. These characteristics, combined with the use of latest-generation electronic switching EC fans with high air flow rate, have allowed the power density to be increased. The space available in the server room is made the most of and this makes the NRG D/K/Q units suitable for applications with high thermal load density, typical of latest generation Data Centres.

Aiming at maximised system efficiency

Design choices include, in addition to the use of electronically controlled expansion valves, the management of variable-speed Scroll compressors and EC (electronically commutated) fans via Modbus. Thanks to these features it is possible to acquire, manage and adjust operating parameters and therefore thermo-hygrometric values in the server room very accurately, with high levels of energy efficiency.

The Dual Cooling units combine the reliability of a dual source with the ease of operation of HiRef cabinets. The on-board control allows you to select the source according to different logics, at your discretion.

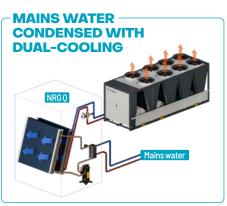
NRG D		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
		Air	temperat	ure 24°C -	Relative	numidity 5	0% / Outd	loor Air Te	mperatur	e 35°C / W	later temp	erature l	n 7°C Out 1	2°C
Cooling capacity	kW	11.7	18.8	22.4	28.8	33.4	38.5	43	51.3	51.6	64	69	73.6	82.8
SHR		0.9	1	1	1	0.93	0.87	0.96	0.88	0.94	0.84	0.95	0.94	0.87
EER		3.57	3.81	3.77	3.91	3.47	3.1	3.55	3.44	3.46	3.3	3.48	3.72	3.72
Chilled water cooling capacity	kW	8.2	29.1	29.1	40.8	40.8	40.8	56	56	65.8	65.8	90	90	90
SHR Chilled water		1	0.82	0.82	0.81	0.81	0.81	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Total absorbed power	kW	3.7	6.1	7.1	8.9	11.2	14	14.4	17.2	17.6	22.1	24.5	24.5	26.9
		Air	temperat	ure 30°C -	Relative l	numidity 3	5% / Outd	loor air Te	mperatur	e 35°C/ W	ater temp	erature In	10°C Out 1	5°C
Cooling capacity	kW	13	21.4	25.3	32.5	37.2	42	48.4	56.2	57.7	69.7	77.5	82.3	90.1
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.89	4.26	4.19	4.33	3.77	3.31	3.87	3.72	3.79	3.51	3.8	4.05	3.96
Chilled water cooling capacity	kW	10.5	31.4	31.4	42.3	42.3	42.3	57.5	57.5	67.5	67.5	92.5	92.5	92.5
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	3.8	6.1	7.2	9.1	11.4	14.3	14.8	17.4	17.9	22.5	25.1	25	27.4
		Air	temperat	ure 35°C -	Relative I	numidity 3	0% / Outd	oor air ter	nperature	35°C/ Wa	ater tempe	erature In	15°C Out 2	o°c
Cooling capacity	kW	14.4	23.5	27.9	36	41	46.1	52.9	61.4	63.3	75.7	85	90.4	98.9
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4.2	4.63	4.56	4.73	4.1	3.51	4.1	3.99	4.09	3.71	4.04	4.33	4.25
Chilled water cooling capacity	kW	10.7	31.6	31.6	42.7	42.7	42.7	57.9	57.9	68	68	93.1	93.1	93.1
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	3.9	6.2	7.3	9.2	11.6	14.7	15.2	17.7	18.2	23.1	25.7	25.5	27.9
Rated air flow	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Number of circuits		1	1	1	1	1	1	1	1	1	1	1	2	2
Number of inverter compressors		1	1	1	1	1	1	1	1	1	1	1	1	1
Number of on/off compressors		-	-	-	-	-	-	-	-	-	-	-	1	1
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	54		70		7	14	75	7	17	75	76	7	5
Dimensions [LxHxD]	mm	900 x1875 x600	1010×20	00x890	12	70×2000×8	90	1760×20	00x890	2020x2	000 x 890	2!	510 x 2000 x 8	90
Power supply	V/ph/Hz							400/3+N/50)					

Performance data relating to Downflow versions combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm for size 0131.

Platform **TRF Evolution**

NRG D/K/Q

NRG K		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
			Air tem	perature	24°C - Rel	ative hum	idity 50%	/ Water 4	0°C - 45°C	/ Water t	emperatu	re In 7°C (lut 12°C	
Cooling capacity	kW	11.4	19.3	23	29.4	33.8	40.1	43.6	51.2	52	64.5	69.7	76	83.1
SHR		0.91	1	0.99	1	0.92	0.85	0.95	0.88	0.94	0.84	0.95	0.93	0.87
EER		3.23	4.16	4.1	4.16	3.61	3.46	3.72	3.44	3.54	3.35	3.59	4.1	3.75
Chilled water cooling capacity	kW	8.2	29.1	29.1	40.8	40.8	40.8	56	56	65.8	65.8	90	90	90
SHR Chilled water		1	0.82	0.82	0.81	0.81	0.81	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Total absorbed power	kW	4	5.8	6.7	8.6	10.9	13.2	14	17.2	17.4	22	24.1	23.2	26.8
			Air tem	perature 3	30°C - Rela	ative humi	dity 35% /	/ Water 40	0°C - 45°C	/ Water t	emperatur	e In 10°C (Out 15°C	
Cooling capacity	kW	12.7	22.2	26.1	33.4	38.1	43.7	49.4	56.3	58.6	69.9	78.8	86	91
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.57	4.89	4.71	4.77	4.08	3.75	4.18	3.77	3.98	3.59	4.01	4.65	4.1
Chilled water cooling capacity	kW	10.5	31.4	31.4	42.3	42.3	42.3	57.5	57.5	67.5	67.5	92.5	92.5	92.5
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	4	5.7	6.7	8.6	10.9	13.3	14.1	17.2	17.4	22.2	24.3	23.2	26.9
			Air tem	perature 3	5°C - Rela	tive humi	dity 30% <i>l</i>	Water 40)°C - 45°C	/ Water to	emperatur	e In 15°C (Out 20°C	
Cooling capacity	kW	14.1	24.7	29.1	37.2	42.1	48.2	55.1	62.4	64.5	77	87	94.4	100.8
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.93	5.56	5.32	5.41	4.54	4.11	4.65	4.18	4.38	3.92	4.38	5.14	4.54
Chilled water cooling capacity	kW	10.7	31.6	31.6	42.7	42.7	42.7	57.9	57.9	68	68	93.1	93.1	93.1
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	4	5.6	6.6	8.5	10.9	13.3	14.1	17.2	17.4	22.3	24.5	23	26.9
Rated air flow	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Number of circuits		1	1	1	1	1	1	1	1	1	1	1	2	2
Number of inverter compressors		1	1	1	1	1	1	1	1	1	1	1	1	1
Number of on/off compressors		-	-	-	-	-	-	-	-	-	-	-	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	54		70		7	4	75	7	7	75	76	7	5
Dimensions [LxHxD]	mm	900 x1875 x600	1010×20	00×890	12	70×2000×8	90	1760×20	000×890	2020×2	000x890	25	10x2000x8	90


Performance data relating to Downflow versions. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm for size 0131.

NRG Q		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
			Air ten	perature	24°C - Rel	lative hum	idity 50%	/ Water 1	5°C - 30°C	/ Water to	emperatu	e In 7°C O	ut 12°C	
Cooling capacity	kW	12.9	21.4	25.6	32.4	37.9	45.3	49.6	57.6	57.8	71.5	77.8	86.2	94.3
SHR		0.86	1	0.94	0.97	0.87	0.81	0.89	0.83	0.89	0.8	0.89	0.87	0.82
EER		5.15	6.59	6.36	6.41	5.49	5.19	5.69	5.09	5.21	4.84	5.24	6.46	5.82
Chilled water cooling capacity	kW	8.2	29.1	29.1	40.8	40.8	40.8	56	56	65.8	65.8	90	90	90
SHR Chilled water		1	0.82	0.82	0.81	0.81	0.81	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Total absorbed power	kW	2.9	4.4	5.1	6.6	8.5	10.3	11	13.6	13.8	17.5	19.5	18	20.9
			Air tem	perature	30°C - Rel	ative hum	idity 35%	/ Water 15	°C - 30°C	/ Water te	mperatur	e In 10°C (out 15°C	
Cooling capacity	kW	13.9	24.5	28.7	36.7	41.7	48.2	54.9	61.8	64.3	76.6	86.5	94.1	101.1
SHR		1	1	1	1	1	0.97	1	0.99	1	0.96	1	1	0.98
EER		5.62	8.04	7.48	7.58	6.12	5.52	6.33	5.49	5.84	5.17	5.78	7.19	6.29
Chilled water cooling capacity	kW	10.5	31.4	31.4	42.3	42.3	42.3	57.5	57.5	67.5	67.5	92.5	92.5	92.5
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	2.9	4.2	5	6.4	8.4	10.3	10.9	13.5	13.7	17.5	19.6	17.7	20.7
			Air tem	perature	35°C - Rela	ative hum	idity 30%	/ Water 15	°C - 30°C	/ Water te	mperatur	e In 15°C O	ut 20°C	
Cooling capacity	kW	15.4	26.9	31.7	40.5	45.7	52.7	60.2	67.7	70.7	83.4	94.9	103.8	110.3
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		6.27	9.47	8.7	8.81	6.85	6.06	7.02	6.08	6.52	5.58	6.29	8.21	6.95
Chilled water cooling capacity	kW	10.7	31.6	31.6	42.7	42.7	42.7	57.9	57.9	68	68	93.1	93.1	93.1
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	2.9	4	4.8	6.2	8.3	10.3	10.9	13.4	13.5	17.7	19.7	17.3	20.5
Rated air flow	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Number of circuits		1	1	1	1	1	1	1	1	1	1	1	2	2
Number of inverter compressors		1	1	1	1	1	1	1	1	1	1	1	1	1
Number of on/off compressors		-	-	-	-	-	-	-	-	-	-	-	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	54		70		7	4	75	7	7	75	76	7	5
Dimensions [LxHxD]	mm	900 x1875 x600	1010×20	100x890	12	70x2000x8	90	1760×20	100×890	2020×20	00×890	25	10×2000×8	90
Power supply	V/ph/Hz							400/3+N/50)					

Performance data relating to Downflow versions. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm for size 0131.

The TRF DX series perimeter mounted units are direct expansion units with Scroll on-off compressors designed to be installed in medium/large-sized premises such as server rooms and labs or for applications where accurate control of thermo-hygrometric parameters and round-the-clock operation are required. The top priority for internal design and for the choice of components is energy efficiency to optimise the system overall electricity consumption with a positive impact on the Data Center Power Usage Effectiveness (PUE).

Versatile and flexible range

Thanks to different refrigerating configurations available, the **TRF DX** range is suitable for a number of applications in the field of Data Center air conditioning.

Air condensed with remote condenser

TRF W

Dry Cooler or Evaporative tower water condensed

TRF Z

Mains water condensed (15°C)

Water condensed and indirect water Free-Cooling

TRF D

Air condensed with remote condenser and Dual Cooling

TRF K

Evaporative tower water condensation or Dry Cooler and Dual Cooling

Mains water condensed (15°C) and Dual Cooling

TRF DX A units are air-condensed perimeter-mounted units in the TRF range; they are widely used for the cooling of Data Centers. The air-condensed solution offers a **simple system design**, thanks to the absence of auxiliary circuits and pumps; **the cooling circuit is managed by the cabinet**, and both the indoor unit and the remote condenser are **easy to install**.

- Refrigerant R410A: Also available with R513A and R134a
- EC Fans
- Scroll on/off compressors
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas (optional)
- Humidity control through dehumidification and humidification (optional)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (optional)
- Electronic expansion valves (optional)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Long distance kits for optimal operation in the event of large distances between indoor and outdoor units (on request)

Safety in the server room

All models in the TRF DX A range feature heat exchange coils with hydrophilic coating as standard. This special coating - together with an adequate selection of air through-flow speeds - aids condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

Green

HiRef is constantly committed to the search for refrigerants with ever-lower environmental impact. The use of ASHRAE Class A1 refrigerants, non-toxic and non-flammable, is essential for close control application. TRF DX A units are available with R134a and R513A refrigerants.

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes **routine** maintenance easier in full compliance with safety standards.

Dual circuit

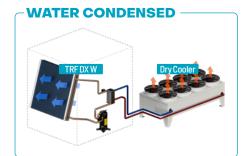
Double-circuit versions are already available at low power levels. This solution offers maximum unit redundancy and ensures continuity of service, more precise refrigerating power and less absorption for partial Data Center loads.

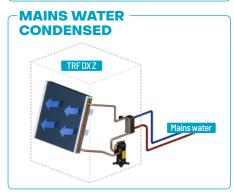
Remote condensers

All units can be combined with HiRef remote condensers, choosing from different combinations to meet all system needs. Oversize remote condensers are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while the compact condensers on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single cooling circuit for maximum reliability and redundancy of the system or with a double cooling circuit, to reduce installation spaces and costs.

TRF DX A		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
						Air	tempe	rature	24°C	- Rela	tive h	umidi	ty 50 %	6 / Ou	tdoor	Air Te	mpera	iture 3	5°C				
Cooling capacity	kW	23.9	26.4	29.5	33.5	36.5	39.9	44.3	48.6	52.4	38.7	43.4	48.6	53.7	61.2	64.2	69.7	78	81.6	89.5	98.2	122.1	134
SHR		1	1	1	1	1	1	0.95	1	1	1	1	1	1	0.92	1	1	0.92	1	0.99	0.93	0.93	0.88
EER		4	3.99	3.89	4.34	4.41	4.08	4.09	4.44	4.22	4.63	4.13	4.09	4.05	4.06	4.22	4.05	3.99	4.23	3.96	3.95	4.07	3.87
Total absorbed power	kW	7.2	7.9	8.8	9.5	10	11.5	12.6	13.6	15.1	11	13.2	14.5	15.9	17.7	19.2	21.1	23.5	25.2	28.5	30.7	35.9	40.5
			Air temperature 30°C – Relative humidity 35% / Outdoor air Temperature 35°C																				
Cooling capacity	kW	27.3	29.7	33.1	38.1	41.3	44.8	48.8	54.8	59	44.1	49.5	55.7	60.5	67.8	72.5	78.3	86.1	92.1	99.9	107.9	135.9	145.6
SHR		1	0.99	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.99
EER		4.39	4.37	4.25	4.83	4.94	4.45	4.4	4.89	4.62	5.11	4.5	4.51	4.44	4.39	4.64	4.51	4.31	4.64	4.3	4.26	4.46	4.11
Total absorbed power	kW	7.4	8	9	9.7	10.1	11.8	12.9	13.9	15.4	11.3	13.6	15	16.3	18.1	19.5	21.3	23.9	25.7	29.1	31.2	36.3	41.3
						Air	tempe	rature	35°C	- Rela	tive h	umidi	ty 30 %	6 / Ou	tdoor	Air te	mpera	ture 3	5°C				
Cooling capacity	kW	29.8	32.7	36.3	41.8	45.2	48.9	53.5	60.1	64.6	47.2	54	60.9	66.5	74.3	79.8	85.5	93.9	101.5	108.9	118.6	148.7	160.1
SHR		1	1	1	1	1	1	1	1	1	0.85	1	1	1	1	1	1	1	1	1	1	1	1
EER		4.71	4.7	4.61	5.19	5.31	4.74	4.73	5.24	4.93	5.36	4.77	4.79	4.82	4.75	5.03	4.83	4.57	5.06	4.58	4.61	4.79	4.47
Total absorbed power	kW	7.6	8.2	9.1	9.8	10.3	12.1	13.1	14.1	15.8	11.5	14	15.4	16.4	18.3	19.8	21.7	24.5	25.9	29.6	31.6	36.9	41.7
Rated air flow	m³/h	8800	8800	8800	11800	11800	15500	11800	15500	11800	15500	15500	15500	15500	15500	19900	19900	19900	25300	25300	25300	32100	32100
Number of circuits		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	2	2
Number of compressors		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	4	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	61	62	63	6	6	71	67	71	67			71				66			69		6	6
D::	mm	1010)	x2000	(890		.70 000	1760 x2000	1270 x2000	1760 x2000	1270 x2000		1760	x2000	(89N		2020	x2000	x890	2510	x2000	x890	310 x20	
Dimensions [LxHxD]	111111	10102	~2000	-000		190		x890				1700	2000	000		2020	2000	000		2000	000	х9	60

Performance data relating to Downflow versions with R410A refrigerant combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Height of model Displacement 2250 mm.


TRF DX W units are water-condensed perimeter-mounted cabinets that use Dry Cooler water. The TRF units of this series are "monobloc" units inside which **the entire cooling circuit is concentrated**. Cooling is via a **brazed-plate exchanger made of stainless steel AISI 304.**


TRF DX Z units are water-condensed perimeter-mounted cabinets that use low temperature mains water or groundwater (15°C). The TRF units of this series are "monobloc" units inside which the entire cooling circuit is concentrated. Cooling is via a brazed-plate exchanger made of stainless steel AISI 304.

The unit has been painstakingly designed to ensure frontal access to components even with the units running. This makes **routine maintenance easier in full compliance with safety standards.**

- Refrigerant R410A: Also available with R513A and R134a
- EC Fans
- Scroll on/off compressors
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas (optional)
- Humidity control through dehumidification and humidification (optional)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (△P control) ventilation modulation (optional)
- Electronic expansion valves (optional)

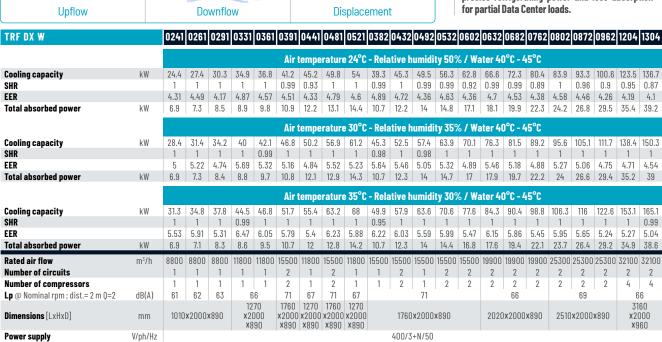
The performance, reliability and efficiency of HiRef units

ts and by cleverly designed internal and external

AIRFLOW CONFIGURATIONS

HiRef is constantly committed to the search for refrigerants with ever-lower environmental **impact.** The use of ASHRAE Class A1 refrigerants, non-toxic and non-flammable, is essential for close control application. TRF DX W/Z units are available with R134a and R513A refrigerants.

Safety in the server room


All models in the TRF DX W/Z range feature heat exchange coils with hydrophilic coating as standard. This special coating - together with an adequate selection of air through-flow speeds - aids condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Dual circuit

Double-circuit versions are already available at low power levels. This solution offers maximum unit redundancy and ensures continuity of service, more precise refrigerating power and less absorption

are guaranteed by using the best quality componenlayouts.

Performance data relating to Downflow versions with R410A refrigerant. I Also available with 60 Hz power supply. I Height of model Displacement 2250 mm

Performance data relating to Downti				,							, .	-											
TRF DX Z		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
							Air	tempe	ratur	24°C	- Rela	ative h	umidi	ity 50°	% / Wa	ater 15	°C - 3	0°C					
Cooling capacity	kW	28	31.1	34.6	39.7	42.2	47.2	52	56.8	61.7	45.2	51.8	57.4	63.8	71.6	76	82	91.3	95.7	108	116	143.1	158.3
SHR		0.97	0.93	0.92	1	0.94	0.93	0.86	0.96	0.94	0.98	1	0.96	0.91	0.86	0.95	0.92	0.84	0.92	0.9	0.85	0.87	0.82
EER		6.77	7.59	6.91	8.36	7.83	7.68	7.31	8.05	7.52	7.76	7.41	6.93	7.71	7.07	7.84	7.49	7.1	7.8	7.6	7.04	7.18	7.04
Total absorbed power	kW	5.4	5.3	6.2	6.5	7.2	7.9	8.9	9.7	10.8	8.5	9.6	10.9	10.9	12.8	13.6	14.9	16.8	18.1	20.1	22.4	25.8	28.4
		Air temperature 30°C – Relative humidity 35% / Water 15°C – 30°C																					
Cooling capacity	kW	32.1	35.3	38.3	45.2	47.3	52.3	56.6	64.2	68.9	52	59.8	65	71.3	77.7	84.9	90.3	99	106.9	117.9	125.1	155.2	169.3
SHR		0.99	1	1	1	0.98	1	1	1	1	0.99	1	1	1	1	1	1	1	1	1	1	1	0.97
EER		7.78	9.14	7.92	10.24	9.25	8.88	8.14	9.5	8.64	8.97	8.55	7.86	9.07	7.9	9.22	8.55	7.89	9.21	8.52	7.72	8	7.69
Total absorbed power	kW	5.4	5.1	6.1	6.2	6.9	7.7	8.7	9.4	10.6	8.5	9.7	10.9	10.5	12.5	13.1	14.5	16.5	17.5	19.7	22.1	25.3	27.9
		5.4 5.1 6.1 6.2 6.9 7.7 8.7 9.4 10.6 8.5 9.7 10.9 10.5 12.5 13.1 14.5 16.5 17.5 19.7 22.1 25.3 Air temperature 35°C - Relative humidity 30% / Water 15°C - 30°C																					
							Air	tempe	ratur	e 35°C	- Rela	ative h	umidi	ity 30°	% / Wa	ater 15	°C - 3	0°C					
Cooling capacity	kW	35.5	38.6	42	49.9	52.1	Air 57.4	tempe 62.1	70.3	35°C 75.6	- Rel a	65.9	umidi 72	ty 30 ° 78.3	% / Wa 85.3	93.7	° C - 3 99.8	0°C 108.8	118.1	130.1	137.3	170.3	184.7
Cooling capacity SHR	kW	35.5 1	38.6 0.98	42 1	49.9	52.1 0.99								_			_		118.1	130.1	137.3	170.3	184.7
	kW	35.5 1 8.59		42 1 9.12	49.9 1 12.24				70.3					_			_		118.1 1 10.93	130.1 1 9.81	137.3 1 8.71	170.3 1 9.19	184.7 1 8.68
SHR	kW kW	1	0.98	1	1	0.99	57.4 1	62.1 1	70.3 0.98	75.6 1	57.4 1	65.9 1	72 1	78.3 1	85.3 1	93.7 1	99.8 1	108.8	1	1	1	1	1
SHR EER		1 8.59	0.98	1 9.12	1 12.24	0.99 10.88	57.4 1 10.35	62.1 1 9.25	70.3 0.98 10.88	75.6 1 9.8	57.4 1 9.92 8.4	65.9 1 9.39	72 1 8.7 10.9	78.3 1 10.56	85.3 1 9.05	93.7 1 10.87 12.6	99.8 1 9.96 14	108.8 1 9.1 15.9	1 10.93 16.7	1 9.81 19.1	1 8.71	1 9.19 24.4	1 8.68 27.2
SHR EER Total absorbed power Rated air flow Number of circuits	kW	1 8.59 5.4	0.98 10.7 4.8	1 9.12 5.8	1 12.24 5.8	0.99 10.88 6.6	57.4 1 10.35 7.3 15500 2	62.1 1 9.25 8.5	70.3 0.98 10.88 9.1 15500 2	75.6 1 9.8 10.4	57.4 1 9.92 8.4	65.9 1 9.39 9.7 15500 2	72 1 8.7 10.9	78.3 1 10.56 10.1 15500 2	85.3 1 9.05 12.1 15500 2	93.7 1 10.87 12.6 19900 2	99.8 1 9.96 14 19900 2	108.8 1 9.1 15.9 19900 2	1 10.93 16.7 25300 2	1 9.81 19.1 25300 2	1 8.71 21.6 25300 2	1 9.19 24.4 32100 2	1 8.68 27.2
SHR EER Total absorbed power Rated air flow Number of circuits Number of compressors	kW m³/h	1 8.59 5.4 8800 1 1	0.98 10.7 4.8 8800 1	1 9.12 5.8 8800 1	1 12.24 5.8 11800 1 1	0.99 10.88 6.6 11800 1	57.4 1 10.35 7.3 15500 2 2	62.1 1 9.25 8.5 11800 1	70.3 0.98 10.88 9.1 15500 2 2	75.6 1 9.8 10.4 11800 1	57.4 1 9.92 8.4	65.9 1 9.39 9.7	72 1 8.7 10.9 15500 1	78.3 1 10.56 10.1	85.3 1 9.05 12.1 15500	93.7 1 10.87 12.6	99.8 1 9.96 14 19900 2 2	108.8 1 9.1 15.9	1 10.93 16.7 25300	1 9.81 19.1 25300 2 2	1 8.71 21.6 25300	1 9.19 24.4 32100 2 4	1 8.68 27.2 32100 2 4
SHR EER Total absorbed power Rated air flow Number of circuits	kW	1 8.59 5.4	0.98 10.7 4.8	1 9.12 5.8	1 12.24 5.8 11800 1 1	0.99 10.88 6.6 11800 1 1	57.4 1 10.35 7.3 15500 2 2 71	62.1 1 9.25 8.5 11800 1 1 67	70.3 0.98 10.88 9.1 15500 2 2 71	75.6 1 9.8 10.4 11800 1 1 67	57.4 1 9.92 8.4	65.9 1 9.39 9.7 15500 2	72 1 8.7 10.9	78.3 1 10.56 10.1 15500 2	85.3 1 9.05 12.1 15500 2	93.7 1 10.87 12.6 19900 2	99.8 1 9.96 14 19900 2	108.8 1 9.1 15.9 19900 2	1 10.93 16.7 25300 2	1 9.81 19.1 25300 2	1 8.71 21.6 25300 2	1 9.19 24.4 32100 2 4	1 8.68 27.2 32100 2 4
SHR EER Total absorbed power Rated air flow Number of circuits Number of compressors	kW m³/h	1 8.59 5.4 8800 1 1 61	0.98 10.7 4.8 8800 1	1 9.12 5.8 8800 1 1 63	1 12.24 5.8 11800 1 1	0.99 10.88 6.6 11800 1 1 6	57.4 1 10.35 7.3 15500 2 2 71 1760 ×2000	62.1 1 9.25 8.5 11800 1	70.3 0.98 10.88 9.1 15500 2 2 71 1760 ×2000	75.6 1 9.8 10.4 11800 1 1 67 1270 x2000	57.4 1 9.92 8.4	65.9 1 9.39 9.7 15500 2 2	72 1 8.7 10.9 15500 1	78.3 1 10.56 10.1 15500 2 2	85.3 1 9.05 12.1 15500 2	93.7 1 10.87 12.6 19900 2 2	99.8 1 9.96 14 19900 2 2	108.8 1 9.1 15.9 19900 2 2	1 10.93 16.7 25300 2 2	1 9.81 19.1 25300 2 2	1 8.71 21.6 25300 2 2	1 9.19 24.4 32100 2 4	1 8.68 27.2 32100 2 4 6 6 60 000

TRF DX F units are water-condensed perimeter-mounted cabinets that are able to exploit **the effect of indirect water-based Free-Cooling**. The F Series uses Dry Cooler water as both a cooling source for Free-Cooling and a heat exchange fluid for condensing the cooling circuit. TRF DX F units are monobloc units inside which the **entire cooling circuit is concentrated**. Condensation takes place through a brazed-plate heat exchanger made of AISI 304 stainless steel.

Maximum energy saving

In periods when the air outside is cooler than the warm air inside the Data Center, the cold water produced by the dry cooler directly feeds the heat exchange coil, which is able to provide a part or all of the required cooling capacity. Before returning to the dry cooler, the water is reused inside the plate exchanger, serving the compressor. The entire process is regulated by a 3-way valve directly controlled by HiRef software, which maximizes the Free-Cooling effect and checks the cooling circuit. In this way the work of the compressor is significantly reduced, and shuts down when a state of Free-Cooling is fully reached, with a significant reduction in the system's PUE.

Safety in the server room

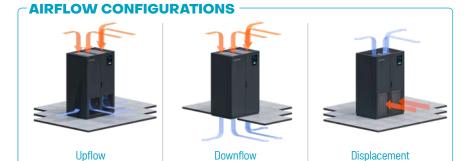
All models in the TRF DX F range feature heat exchange coils with hydrophilic coating as standard. This special coating - together with an adequate selection of air through-flow speeds - aids condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

- Refrigerant R410A: Also available with R513A and R134a
- FC Fans
- Scroll on/off compressors
- Advanced control comes as standard
- Temperature control through heating and post-heating systems with electric heating elements (optional)
- Humidity control through dehumidification and humidification (optional)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (optional)
- Electronic expansion valves (optional)

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components even with the units running. This makes routine maintenance easier in full compliance with safety standards.

Efficiency


The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

Green

HiRef is constantly committed to the search for refrigerants with ever-lower environmental impact. The use of ASHRAE Class A1 refrigerants, nontoxic and non-flammable, is essential for the close control application. TRF DX F units are available with R134a and R513A refrigerants.

Dual circuit

Double-circuit versions are already available at low power levels. This solution offers maximum unit redundancy and ensures continuity of service, more precise refrigerating power and less absorption for partial Data Center loads.

TRF DX F		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
						Insid	e air 2	24°C -	50 % /	Wate	r 40°(; - 45°	C / Fr	ee-co	oling v	vater	7°C /	Glycol	30 %				
Cooling capacity	kW	22.9	25.7	28.9	32	34.9	39.1	42.9	46.2	50.8	37.1	41.8	45.8	52.5	57.6	62.3	68.7	75.9	80.1	89.6	96.7	115.4	128.4
SHR		1	0.95	0.89	0.97	1	0.89	0.87	1	0.96	1	1	1	0.94	0.88	0.94	0.91	0.85	0.98	0.88	0.87	0.89	0.85
EER		4.01	4.16	3.95	4.42	4.28	4.24	4.08	4.39	4.29	4.58	4.33	4	4.28	3.96	4.35	4.25	4.12	4.33	4.25	4.07	3.88	3.81
Free-Cooling capacity	kW	24.6	26.9	28	33.3	34.8	37.8	40.8	52.1	52.1	44.9	46.2	52.1	54.2	58.5	62.5	67.6	70.2	85.7	89.1	92.5	124.5	133.3
SHR Free-Cooling		0.9	0.86	0.84	0.9	0.88	0.84	0.81	0.86	0.86	1	0.91	0.86	0.84	0.81	0.86	0.82	0.81	0.84	0.82	0.81	0.79	0.77
Total absorbed power	kW	6.8	7.3	8.4	8.8	9.7	10.7	12	13.2	14.5	10.8	12.2	14.1	15	17.2	17.6	19.4	21.7	23.8	26.4	29.1	35.2	39.2
						Insid	e air 3	0°C -	35 % /	Wate	r 40°C	- 47°	C / Fre	e-coc	oling w	ater 1	12°C /	Glyco	30%				
Cooling capacity	kW	26	28.4	31.4	36	38.7	42.7	46.1	51.5	55.9	42.5	47.9	51.8	57.7	62.1	69.1	74.5	81.2	88.3	97.7	103.3	125.2	136.3
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4.38	4.45	4.14	4.83	4.61	4.47	4.23	4.75	4.57	5.06	4.76	4.35	4.55	4.12	4.68	4.47	4.24	4.62	4.48	4.19	4.07	3.93
Free-Cooling capacity	kW	24	24.7	25.5	32.4	33.4	34.4	35.3	47.9	49.3	43.8	45.1	49.3	49.3	50.7	57.5	60.8	62.5	77.9	80.1	82.3	109.6	109.6
SHR Free-Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	7.1	7.5	8.7	9	9.9	11.1	12.4	13.5	14.9	11.1	12.6	14.6	15.4	17.7	18	19.9	22.4	24.4	27.1	29.9	36.3	40.2
						Insid	e air 3	5°C -	30% <i>/</i>	Wate	r 40°C	- 47°	C / Fre	e-coc	oling w	ater 1	17°C /	Glyco	30 %				
Cooling capacity	kW	28.8	31.4	34.5	39.9	42.9	47	50.7	57.2	61.8	47	53.1	57.6	63.9	68.9	76.7	82.6	90.1	98.4	108.1	114.3	137.8	149.9
SHR		1	1	1	0.98	1	0.99	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4.85	4.98	4.59	5.41	5.17	4.94	4.67	5.34	5.07	5.61	5.29	4.83	5.1	4.61	5.23	5.01	4.71	5.18	4.97	4.65	4.49	4.34
Free-Cooling capacity	kW	25.6	26.3	26.4	34.5	34.5	35.7	36.6	50.9	50.9	46.9	47.9	50.9	50.9	53.9	61.1	62.7	63	80.4	82.6	85.2	112.7	113.3
SHR Free-Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	7.1	7.4	8.7	8.9	9.8	11	12.4	13.4	14.9	11.1	12.6	14.6	15.2	17.6	17.9	19.8	22.4	24.3	27	29.9	36.2	40
Rated air flow	m³/h	8000	8000	8000	10800	10800	15500	10800	15000	10800	15500	15500	15500	15500	15500	18600	18600	18600	24500	24500	24500	31800	31800
Number of circuits		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	2	2
Number of compressors		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	4	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	61	6	2	6	5	71	65	71	65			71				65			69		6	6
Dimensions [LxHxD]	mm	1010	1010x2000x890			70 000 90	1760 x2000 x890		1760 x2000 x890			1760	x2000	x890		2020)×2000	x890	2510)x2000	x 890	x21	60 000 160
Power supply	V/ph/Hz						200	200	200	200		400/3	+N/50										

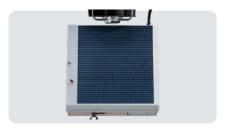
TRF DX D/K/Q units are Dual Cooling units. They combine the traditional evaporative coil of the cooling circuit with **the cooling effect of chilled water** coming from an outdoor unit such as a chiller. The use of a dual source guarantees the **continuity of supply to the system and the best operational solution in all cases**, **in order to minimize operating costs**.

Remote condensers

All TREF DX D units can be combined with HiRef remote condensers, choosing from different combinations to meet all system needs. Oversize remote condensers are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while the compact condensers on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single cooling circuit for maximum reliability and redundancy of the system or with a double cooling circuit, to reduce installation spaces and costs.

- Refrigerant R410A: Also available with R513A and R134a
- FC Fans
- Scroll on/off compressors
- Advanced control comes as standard
- Temperature control through heating and post-heating systems with electric heating elements (optional)
- Humidity control through dehumidification and humidification (optional)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (optional)
- Electronic expansion valves (optional)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Long distance kits for optimal operation in the case of large distances between indoor and outdoor units (on request, available exclusively for Version D)

AIRFLOW CONFIGURATIONS



Displacement

Safety in the server room

All models in the TRF DX D/K/Q range feature heat exchange coils with hydrophilic coating as standard. This special coating - together with an adequate selection of air through-flow speeds - aids condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes **routine** maintenance easier in full compliance with safety standards.

Maximum flexibility

The Dual Cooling units combine **the reliability of a dual source with the ease of operation of HiRef cabinets.** The on-board control allows you to select the source according to different logics, at your discretion.

Green

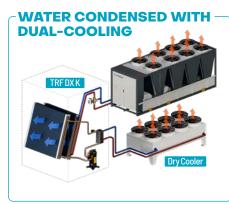
HiRef is constantly committed to the search for refrigerants with an ever-lower environmental impact. The use of ASHRAE Class A1 refrigerants, non-toxic and non-flammable, is essential for close control application. TRF DX D/K/Q units are available with R134a and R513A refrigerants.

Dual circuit

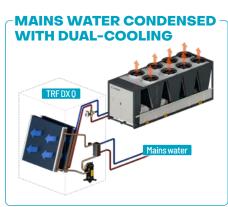
Double-circuit versions are already available at low power levels. This solution offers maximum unit redundancy and ensures continuity of service, more precise refrigerating power and less absorption for partial Data Center loads.

TRF DX D		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
			Air t	empei	ature	24°C -	- Rela	tive hu	ımidit	y 50 %	/ Out	door <i>l</i>	\ir Ten	npera	ture 3	5°C / '	Water	temp	eratui	e In 7	°C Out	12°C	
Cooling capacity	kW	22.6	25	28.6	31.4	34.8	38.3	42.7	45.4	49.7	36.7	40.6	45.3	50.4	57	61.1	67.2	74.6	78.6	87.4	95.5	115.6	126.5
SHR		1	0.97	0.91	1	1	0.9	0.89	1	0.95	1	1	1	0.92	0.9	0.97	0.91	0.86	0.96	0.92	0.87	0.89	0.83
EER		3.84	3.83	3.8	4.14	4.24	4.01	4	4.19	4.05	4.44	3.91	3.86	3.83	3.81	4.06	3.98	3.9	4.14	3.93	3.93	3.89	3.68
Chilled water cooling capacity	kW	29.1	29.1	29.1	40.8	40.8	40.8	40.8	58.5	58.5	58.5	58.7	58.5	58.5	58.5	70.2	70.2	70.2	92.5	92.5	92.5	128.9	128.9
SHR Chilled water		0.82	0.82	0.82	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.8	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.78	0.78
Total absorbed power	kW	7	7.7	8.6	9.1	9.7	11.1	12.2	13.5	15	11	12.9	14.4	15.8	17.6	18.3	20.1	22.4	24.3	27.5	29.6	35.2	39.9
			Air to	emper	ature	30°C -	Rela	tive hu	ımidit	y 35 %	/ Out	door a	ir Ten	npera	ture 3!	5°C/V	Vater	tempe	ratur	e In 10	°C Out	15°C	
Cooling capacity	kW	25.8	27.9	31.1	35.5	38.8	42.2	46.3	50.8	55	42.2	46.4	51.4	56.2	62	68	73.6	81.1	87.8	96	103.4	125.8	136
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4.24	4.18	4.06	4.58	4.67	4.29	4.27	4.57	4.34	4.94	4.26	4.23	4.17	4.07	4.45	4.29	4.15	4.51	4.23	4.16	4.16	3.91
Chilled water cooling capacity	kW	31.4	31.4	31.4	42.3	42.3	42.3	42.3	60.8	60.8	60.8	60.3	60.8	60.8	60.8	72.9	72.9	72.9	96.1	96.1	96.1	127.8	127.8
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	7.2	7.8	8.8	9.3	9.8	11.3	12.4	13.8	15.4	11.2	13.4	14.8	16.1	17.9	18.5	20.4	22.8	24.8	28	30.1	35.8	40.3
			Air te	emper	ature	35°C -	Relat	ive hu	ımidit	y 30 %	/ Out	door a	ir tem	perat	ure 35	°C/ W	ater t	empe	rature	In 15	°C Out	20°C	
Cooling capacity	kW	28.3	30.3	34.1	39	42.6	46.2	50.5	55.9	60.4	46.2	50.7	56.4	61.4	67.4	74.7	81	88.7	96.5	104.8	112.9	137.5	148.6
SHR		1	1	1	1	1	1	1	1	1	1	0.99	1	1	1	1	1	1	1	1	1	1	1
EER		4.56	4.42	4.39	4.94	5.09	4.59	4.58	4.93	4.7	5.27	4.56	4.49	4.47	4.33	4.76	4.67	4.44	4.88	4.48	4.46	4.47	4.21
Chilled water cooling capacity	kW	31.6	31.6	31.6	42.7	42.7	42.7	42.7	61.2	61.2	61.2	60.7	61.2	61.2	61.2	73.5	73.5	73.5	96.8	96.8	96.8	128.7	128.7
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	7.3	8	8.9	9.4	9.9	11.6	12.5	14	15.6	11.4	13.7	15.3	16.4	18.3	19	20.6	23.2	25.1	28.7	30.6	36.2	40.8
Rated air flow	m³/h	8000	8000	8000	10800	10800	15500	10800	15000	10800	15500	15500	15500	15500	15500	18600	18600	18600	24500	24500	24500	31800	31800
Number of circuits		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	2	2
Number of compressors		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	4	4
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	61	6	2	6	5	71	65	71	65			71				65			69		6	66
Dimensions [LxHxD]	mm	1010	x2000	x890	x21	70 000 90	1760 x2000 x890	1270 x2000 x890		1270 x2000 x890		1760	x2000	x890		2020)x2000	x890	2510	x2000	x890	x21	60 000 160
Power supply	V/ph/Hz											400/3	+N/50										

Performance data relating to Downflow versions with R410A refrigerant combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Height of model Displacement 2250 mm.


Platform **TRF Evolution**

TRF DX D/K/Q


TRF DX K		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
				Air t	empei	rature	24°C	- Rela	tive h	umidit	y 50 %	/ Wa	ter 40	°C - 4	5°C / '	Water	temp	eratur	e In 7	°C Out	12°C		
Cooling capacity	kW	23	25.8	29.1	32.2	34.9	39.2	43.1	46.4	50.7	37.2	42	45.8	52.3	57.9	62.6	68.4	76.2	79.9	90.1	97.2	116.1	128.
SHR		1	0.93	0.9	0.97	0.96	0.9	0.87	1	0.92	1	1	0.98	0.9	0.88	0.94	0.88	0.86	0.95	0.89	0.88	0.9	0.82
EER		4.05	4.2	4	4.48	4.3	4.29	4.14	4.45	4.31	4.63	4.38	4.04	4.29	4.01	4.4	4.26	4.16	4.36	4.3	4.12	3.93	3.83
Chilled water cooling capacity	kW	29.1	29.1	29.1	40.8	40.8	40.8	40.8	58.5	58.5	58.5	58.7	58.5	58.5	58.5	70.2	70.2	70.2	92.5	92.5	92.5	128.9	128.9
SHR Chilled water		0.82	0.82	0.82	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.8	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.78	0.78
Total absorbed power	kW	6.8	7.3	8.4	8.7	9.6	10.7	11.9	13.1	14.5	10.7	12.2	14	14.9	17.1	17.5	19.3	21.6	23.6	26.2	28.9	35	38.9
			Air temperature 30°C - Relative humidity 35% / Water 40°C - 45°C / Water temperature In 10°C Out 15°															15°C					
Cooling capacity	kW	26.5	29.1	31.9	36.6	39.3	43.3	47.1	52.6	57.1	43.2	48.7	52.8	58.6	63.1	70.2	76.1	82.9	90.1	99.2	105.5	127.2	138.2
SHR		1	1	1	0.98	1	0.99	1	1	1	1	1	1	1	1	1	1	1	1	0.99	1	1	0.99
EER		4.67	4.78	4.4	5.13	4.89	4.73	4.52	5.09	4.87	5.37	5.07	4.64	4.85	4.38	4.96	4.78	4.52	4.92	4.74	4.47	4.31	4.15
Chilled water cooling capacity	kW	31.4	31.4	31.4	42.3	42.3	42.3	42.3	60.8	60.8	60.8	60.3	60.8	60.8	60.8	72.9	72.9	72.9	96.1	96.1	96.1	127.8	127.8
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	6.8	7.2	8.4	8.6	9.6	10.7	12	13	14.4	10.7	12.2	14.1	14.8	17.1	17.4	19.2	21.6	23.6	26.2	28.9	35	38.8
				Air te	mper	ature	35°C -	Relat	ive hu	ımidity	30 %	/ Wat	er 40°	C - 45	°C / V	Vater 1	tempe	ratur	e In 15	°C Out	20°C		
Cooling capacity	kW	29.4	32.1	35.4	40.8	43.4	47.6	51.5	58.1	63.1	47.9	54	58.8	64.9	70	77.8	83.8	91.3	99.7	109.8	116.1	141.1	152
SHR		1	1	1	1	1	0.98	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		5.19	5.35	4.92	5.8	5.48	5.24	4.96	5.67	5.42	5.97	5.62	5.17	5.44	4.9	5.56	5.32	4.99	5.5	5.29	4.94	4.82	4.6
Chilled water cooling capacity	kW	31.6	31.6	31.6	42.7	42.7	42.7	42.7	61.2	61.2	61.2	60.7	61.2	61.2	61.2	73.5	73.5	73.5	96.8	96.8	96.8	128.7	128.7
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	6.8	7.1	8.3	8.6	9.4	10.6	11.9	12.9	14.3	10.7	12.2	14.1	14.6	17	17.3	19	21.6	23.4	26.1	28.8	34.8	38.6
Rated air flow	m³/h	8000	8000	8000	10800	10800	15500	10800	15000	10800	15500	15500	15500	15500	15500	18600	18600	18600	24500	24500	24500	31800	31800
Number of circuits		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	2	2
Number of compressors		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	4	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	61	6	2	6	5	71	65	71	65			71				65			69		6	66
Dimensions [LxHxD]	mm	1010	x2000:	x89N	1270		1760 x2000	1270 x2000	1760 x2000	1270 x2000		1760	x2000:	x89N		2020)x2000	x89N	2510	x2000	x89N		160 000
Dimensions [EXHAD]		1010	A2000	NUUU		x890 x890 x890 x890 x890						2020 x 2000 x 030 x 0											
Power supply	V/ph/Hz																						

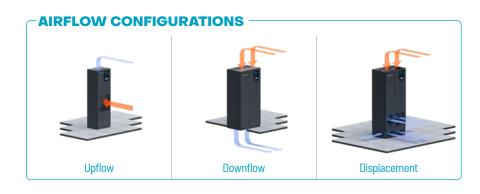
Performance data relating to Downflow versions with R410A refrigerant. | Also available with 60 Hz power supply. | Height of model Displacement 2250 mm.

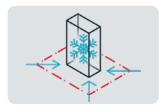
TRF DX Q		0241	0261	0291	0331	0361	0391	0441	0481	0521	0382	0432	0492	0532	0602	0632	0682	0762	0802	0872	0962	1204	1304
				Air t	empe	rature	24°C	- Rela	tive h	umidit	y 50 %	6 / Wa	ter 15	°C - 30	O°C / V	Vater	tempe	eratur	e In 7°	C Out	12°C		
Cooling capacity	kW	26.7	29.6	33.2	36.8	39.7	44.2	49.1	53.3	58.3	42.9	48.8	53.5	59.8	65.9	71.1	77.4	86	90.9	103.5	110.4	134.6	147.7
SHR		0.93	0.88	0.83	0.93	0.91	0.82	0.81	0.93	0.88	1	0.96	0.92	0.85	0.82	0.9	0.84	0.82	0.88	0.84	0.81	0.85	0.78
EER		6.46	7.08	6.54	7.5	7.15	6.97	6.76	7.49	7.07	7.38	6.99	6.47	7.14	6.45	7.13	6.89	6.56	7.2	7.14	6.61	6.66	6.47
Chilled water cooling capacity	kW	29.1	29.1	29.1	40.8	40.8	40.8	40.8	58.5	58.5	58.5	58.7	58.5	58.5	58.5	70.2	70.2	70.2	92.5	92.5	92.5	128.9	128.9
SHR Chilled water		0.82	0.82	0.82	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.8	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.78	0.78
Total absorbed power	kW	5.3	5.3	6.2	6.4	7.1	7.9	8.8	9.8	10.9	8.5	9.5	11	11.1	12.9	13.2	14.5	16.4	17.9	19.8	22	25.7	28.3
				Air t	emper	ature	30°C	- Rela	tive h	umidit	y 35 %	/ Wa	ter 15°	°C - 30	°C / W	later i	tempe	rature	e In 10	°C Out	15°C		
Cooling capacity	kW	29.7	32.3	35.6	41.2	43.7	48	52.5	59	63.8	49.3	55.2	59.7	65.4	70.5	78.3	83.3	91.3	100.2	110.6	118.1	144	156.8
SHR		1	1	1	1	1	1	0.99	1	1	1	1	1	1	0.99	1	1	0.96	1	0.98	0.98	1	0.93
EER		7.2	8.01	7.13	8.75	8.11	7.74	7.31	8.56	7.9	8.49	7.88	7.21	8.07	7.02	8.08	7.55	7.05	8.23	7.75	7.15	7.27	6.97
Chilled water cooling capacity	kW	31.4	31.4	31.4	42.3	42.3	42.3	42.3	60.8	60.8	60.8	60.3	60.8	60.8	60.8	72.9	72.9	72.9	96.1	96.1	96.1	127.8	127.8
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	5.3	5.2	6.1	6.2	6.9	7.7	8.7	9.6	10.8	8.5	9.6	11	10.8	12.7	12.9	14.3	16.2	17.5	19.6	21.8	25.3	28
				Air to	emper	ature	35°C -	Relat	ive h	ımidit	y 30 %	/ Wai	ter 15°	C - 30	°C / W	ater t	empe	rature	In 15°	°C Out	20°C		
Cooling capacity	kW	32.9	35.5	39.1	45.2	48	52.4	56.9	65.1	70	54.4	61.1	66	71.9	77	85.5	91.7	99.8	110	122.4	128	157.1	170.2
SHR		1	1	1	1	1	0.99	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.98
EER		7.96	9.26	8.08	10.1	9.28	8.74	8.07	9.86	8.88	9.4	8.72	7.97	9.32	7.9	9.2	8.59	7.89	9.47	8.85	7.87	8.19	7.78
Chilled water cooling capacity	kW	31.6	31.6	31.6	42.7	42.7	42.7	42.7	61.2	61.2	61.2	60.7	61.2	61.2	61.2	73.5	73.5	73.5	96.8	96.8	96.8	128.7	128.7
SHR Chilled water		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	5.3	5	6	6	6.7	7.5	8.6	9.3	10.6	8.5	9.6	11	10.4	12.4	12.6	13.9	15.9	16.9	19.1	21.6	24.7	27.4
Rated air flow	m³/h	8000	8000	8000	10800	10800	15500	10800	15000	10800	15500	15500	15500	15500	15500	18600	18600	18600	24500	24500	24500	31800	31800
Number of circuits		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	2	2
Number of compressors		1	1	1	1	1	2	1	2	1	1	2	1	2	2	2	2	2	2	2	2	4	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	61	6	2	6	5	71	65	71	65			71				65			69		6	6
Dimensions [LxHxD]	mm	1010	x2000	x890	12 x20 x8	000	1760 x2000 x890	1270 x2000 x890		1270 x2000 x890		1760	x2000	x890		2020)x2000	x890	2510	x2000	x 890	31 x20 x9	000
Power supply	V/ph/Hz											400/3	+N/50										

Performance data relating to Downflow versions with R410A refrigerant. I Also available with 60 Hz power supply. | Height of model Displacement 2250 mm.

The JREF CW Radial series perimeter mounted units are chilled water units with EC radial fans for small-sized premises such as server rooms and labs or for applications where **accurate control of thermo-hygro-metric parameters and round-the-clock operation are required**. In-depth CFD (computational fluid dynamics) analysis has allowed for the meticulous design of every last constructive detail to **minimise air pressure drops and, therefore, fan power consumption**. Air through-flow sections have been expanded to make **installation and maintenance operations faster and easier**.

Extended filter section


Air filters, located on the entire surface of the coil, maximize the filtering section and minimize the unit's air pressure drops.


Ventilation adjustment

Depending on the air distribution logic in the server room, it is possible to adjust the machine on-board ventilation system to ensure a **constant air flow rate** (airflow control) or a **constant available overpressure** (ΔP control). The latter is particularly useful if a floating floor is used.

- Temperature control through heating and post-heating systems using electric heating elements, additional hot water coil, or both (optional)
- Humidity control through dehumidification and humidification (optional)
- Fan speed modulation based on thermal load (constant ΔT)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (\Delta P control) ventilation modulation (optional)
- Instant reading of water flow rate, water inlet and outlet temperatures, or supplied cooling capacity (optional)

High power density

The reduced footprint and high efficiency offer higher cooling capacity. In this way the space dedicated to the units in the Data Center is minimized, making the most of available spaces.

Double circuit

Chilled water units are also available with a double circuit. In this version the supply is via two different hydraulic circuits that can offer the utmost operational continuity if one of the two circuits malfunctions. Each circuit is equipped with a regulating valve

Ventilation EC

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT . Their accurate adjustment allows an efficient use of power for ventilation and a consequent reduction of the system's PUE. Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation even in the event of microprocessor malfunctions.


Finned pack coil with hydrophilic coating

All models in the JREF CW Radial range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection and outflow during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Accurate regulation with multiple types of valves

All units in the JREF CW Radial range have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system or with servo motor with spring return. Pressure-independent valves can also be fitted on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes **routine maintenance easier in full compliance with safety standards.**

JREF CW R		0150	0170	0210	0250	0270	0320				
			Air temperature 24°	C - Relative humidity	50% / Water temper	ature In 7°C Out 12°C					
Cooling capacity	kW	14.6	17	21.2	24.8	27.2	31.7				
SHR		0.9	0.88	0.8	0.84	0.86	0.8				
EER		19.55	21.34	23.96	20.79	23.17	27.54				
			Air temperature 30°C - Relative humidity 35% / Water temperature In 10°C Out 15°C								
Cooling capacity	kW	17.7	20.2	21.9	27.4	31.4	32.9				
SHR		1	1	1	1	1	0.99				
EER		23.62	25.33	24.83	22.98	26.72	28.56				
			Air temperature 35°(- Relative humidity	30% / Water tempera	ture In 15°C Out 20°C					
Cooling capacity	kW	17.8	20.3	22	27.6	31.5	32.9				
SHR		1	1	1	1	1	1				
EER		23.84	25.46	24.86	23.14	26.83	28.59				
Rated air flow	m³/h	4130	4130	4130	6130	6060	5930				
Total fan absorbed power	kW	0.8	0.8	0.9	1.2	1.2	1.1				
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	59	60	61		62					
Dimensions [LxHxD]	mm	000×2000×600 900×2000×600									
Power supply	V/ph/Hz	Hz 400/3+N/50									

 $Performance\ data\ relating\ to\ Downflow\ versions.\ |\ Also\ available\ with\ 60\ Hz\ power\ supply.\ |\ Height\ of\ model\ Displacement\ 2100\ mm.$

The JREF DX Radials series perimeter mounted units are direct expansion units with EC radial fans designed to be installed in small-sized premises such as server rooms and labs or for applications where **accurate control of thermo-hygrometric parameters and round-the-clock operation are required**. The top priority for internal design and for the choice of components is **energy efficiency** - to **optimise the system overall electricity consumption** with a positive impact on the Data Center Power Usage Effectiveness (PIIF)

Versatile and flexible range

It is available with different cooling configurations:

Air condensed units with remote condenser

Mains water condensed units (15°C) with on board plate condenser

Dry Cooler water condensed units (15°C) with on board plate condenser

The JREF DX A Radial units are air-condensed perimeter-mounted units in the JREF range; they are widely used for the cooling of Data Centers. The air-condensed solution offers **a simple system design**, thanks to the absence of auxiliary circuits and pumps; the cooling circuit is managed by the cabinet, and both the indoor unit and the remote condenser are **easy to install**.

Upflow Downflow Displacement

- Refrigerant R410A: Also available with R513A and R134a
- EC Fans
- Scroll on/off compressors
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas (optional)
- Humidity control through dehumidification and humidification (optional)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (optional)
- Electronic expansion valves (optional)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Long distance kits for optimal operation in the event of large distances between indoor and outdoor units (on request)

Safety in the server room

All models in the JREF DX A Radial range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Green

HiRef is constantly committed to the search for refrigerants that have an increasingly reduced environmental impact. The use of ASHRAE Class A1 refrigerants, non-toxic and non-flammable, is essential for the "close control" application. JREF DX A Radial units are available with R134a and R513A refrigerants.

Ventilation EC

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT . Their accurate adjustment allows an efficient use of power for ventilation and a consequent reduction of the system's PUE. Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation even in the event of microprocessor malfunctions.

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

Easier scheduled maintenance

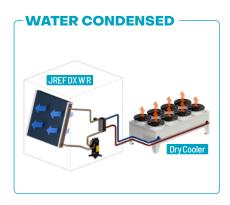
The unit has been painstakingly designed to ensure frontal access to components. This makes **routine maintenance easier in full compliance with safety standards.**

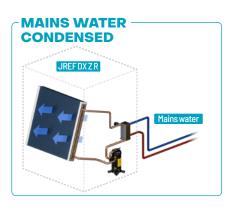
Remote condensers

All units can be combined with HiRef remote condensers, choosing from different combinations to meet all system needs. Oversize remote condensers are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while the compact condensers on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single cooling circuit for maximum reliability and redundancy of the system or with a double cooling circuit, to reduce installation spaces and costs.

JREF DX A R		0060	0800	0100	0110	0130	0160	0190	0205	0212
			Air	temperature 2	4°C - Relative	humidity 50%	/ Outdoor Air 1	Temperature 3	5°C	
Cooling capacity	kW	6.5	8.6	10.8	11.9	13.8	16.7	19.7	22.6	22.8
SHR		0.99	0.94	0.98	0.97	0.89	1	0.95	0.89	0.88
EER		3.49	4.76	3.92	3.89	3.38	3.83	3.82	4.12	3.79
Total absorbed power	kW	2	2	3	3.3	4.5	5.2	6	6.3	6.8
		Air temperature 30°C - Relative humidity 35% / Outdoor air Temperature 35°C							5°C	
Cooling capacity	kW	7.1	9.4	12.1	13.4	15.2	18.9	22.1	24.7	24.9
SHR		1	1	1	1	1	1	1	1	1
EER		3.71	5.14	4.33	4.32	3.63	4.17	4.16	4.43	4.09
Total absorbed power	kW	2	2	3.1	3.4	4.6	5.4	6.1	6.4	6.9
Rated air flow	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100
Number of circuits		1	1	1	1	1	1	1	1	2
Number of compressors		1	1	1	1	1	1	1	1	2
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	49	50	5	3	54	55		56	
Dimensions [LxHxD]	mm	600x1875x600 900x1875x600								
Power supply	V/ph/Hz	400/3+N/50								

Performance data relating to Downflow versions with R410A refrigerant combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm.





JREF W Radial units are water-condensed perimeter-mounted cabinets and they use Dry Cooler water. The JREF units of this series are "monobloc" units inside which **the entire cooling circuit is concentrated**. Cooling is via a **brazed plate exchanger made of stainless steel AISI 304**.

JREF Z Radial units are water-condensed perimeter-mounted cabinets they use low temperature mains water or groundwater (15°C). The JREF units of this series are "monobloc" units inside which **the entire cooling circuit is concentrated**. Cooling is via a **brazed plate exchanger made of stainless steel AISI 304**.

AIRFLOW CONFIGURATIONS Upflow Downflow Displacement

- Refrigerant R410A: Also available with R513A and R134a
- EC Fans
- Scroll on/off compressors
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas (optional)
- Humidity control through dehumidification and humidification (optional)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (△P control) ventilation modulation (optional)
- Electronic expansion valves (optional)

Safety in the server room

All models in the JREF W/Z Radial range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Ventilation EC

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT . Their accurate adjustment allows an efficient use of power for ventilation and a consequent reduction of the system's PUE. Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation even in the event of microprocessor malfunctions.

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

HiRef is constantly committed to the search for refrigerants that have an increasingly reduced environmental impact. The use of ASHRAE Class A1 refrigerants, non-toxic and non-flammable, is essential for the "close control" application. All JREF W/Z Radial units are available with R134a and R513A refrigerants.

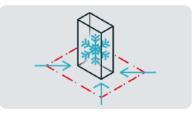
Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes **routine** maintenance easier in full compliance with safety standards.

JREF DX W R		0060	0800	0100	0110	0130	0160	0190	0205	0212
				Air tempera	ture 24°C - Re	lative humidity	y 50% / Water	40°C - 45°C		
Cooling capacity	kW	6.6	8	10.5	11.5	13.6	16.3	18.9	20.8	22
SHR		0.98	0.98	1	0.98	0.91	1	0.97	0.93	0.9
EER		3.82	3.78	3.54	3.54	3.18	3.66	3.45	3.17	3.35
Total absorbed power	kW	1.9	2.3	3.2	3.5	4.7	5.3	6.3	7.4	7.4
				Air tempera	ture 30°C - Re	lative humidit	y 35% / Water	40°C - 45°C		
Cooling capacity	kW	7.3	8.8	11.8	13.2	15.1	18.7	21.5	23.1	24.2
SHR		1	1	1	1	1	1	1	1	1
EER		4.12	4.17	4	4.04	3.49	4.17	3.88	3.48	3.69
Total absorbed power	kW	1.9	2.3	3.2	3.5	4.7	5.3	6.4	7.5	7.4
Rated air flow	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100
Number of circuits		1	1	1	1	1	1	1	1	2
Number of compressors		1	1	1	1	1	1	1	1	2
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	49	50	5	3	54	55		56	
Dimensions [LxHxD]	mm	600x1875x600 900x1875x600								
Power supply	V/ph/Hz					400/3+N/50				

Performance data relating to Downflow versions with R410A refrigerant. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm.

JREF DX Z R		0060	0800	0100	0110	0130	0160	0190	0205	0212
				Air tempera	iture 24°C - Re	lative humidit	y 50% / Water	15°C - 30°C		
Cooling capacity	kW	7.3	9.1	11.7	12.8	15.7	19.1	22.2	24.1	24.5
SHR		0.89	0.89	0.94	0.92	0.86	0.93	0.9	0.86	0.85
EER		5.99	6.07	5.21	5.01	5.03	5.8	5.53	4.99	4.74
Total absorbed power	kW	1.3	1.7	2.5	2.8	3.5	4.1	4.8	5.7	6
			Air temperature 30°C - Relative humidity 35% / Water 15°C - 30°C							
Cooling capacity	kW	7.8	9.9	12.9	14.3	16.8	21.2	24.3	25.9	26.5
SHR		1	1	1	1	1	1	1	1	1
EER		6.39	6.55	5.73	5.57	5.37	6.39	5.97	5.34	5.14
Total absorbed power	kW	1.3	1.7	2.5	2.9	3.5	4.2	4.9	5.7	6
Rated air flow	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100
Number of circuits		1	1	1	1	1	1	1	1	2
Number of compressors		1	1	1	1	1	1	1	1	2
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	49	50	5	3	54	55		56	
Dimensions [LxHxD]	mm	600x1875x600 900x1875x600								
Power supply	V/ph/Hz	400/3+N/50								


Performance data relating to Downflow versions with R410A refrigerant. I Also available with 60 Hz power supply. | Model height Displacement 2125 mm.

The JREF CW Centrifugal series perimeter mounted units are chilled water units with AC centrifugal fans for small-sized premises such as server rooms and labs or for applications where **accurate control of thermo-hygrometric parameters and round-the-clock operation are required**. The internal design and the choice of components are primarily aimed at **ensuring a compact design to make unit installation as easy as possible**.

High power density

The reduced footprint and high efficiency offer higher cooling capacity. In this way the space dedicated to the units in the Data Center is minimized, making the most of available spaces.

Double circuit

Chilled water units are also available with a double circuit. In this version the supply is via two different hydraulic circuits that can offer the utmost operational continuity if one of the two circuits malfunctions. Each circuit is equipped with a regulating valve

- Temperature control through heating and post-heating systems using electric heating elements, additional hot water coil, or both (optional)
- Humidity control through dehumidification and humidification (optional)
- Fan speed modulation based on thermal load (constant ΔT)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Instant reading of water flow rate, water inlet and outlet temperatures, or supplied cooling capacity (optional)

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes **routine maintenance easier in full compliance with safety standards.**

Finned pack coil with hydrophilic coating

All models in the JREF CW Centrifugal range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection and outflow during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Accurate regulation with multiple types of valves

All units in the JREF CW Centrifugal range have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system or with servo motor with spring return. Pressure-independent valves can also be fitted on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.

JREF CW C		0800	0110	0140	0160	0200	0230
		Air tempe	rature 24°C - Re	lative humidity	50% / Water te	mperature In 7°	C Out 12°C
Cooling capacity	kW	6.9	10	12.8	14.5	18.7	20.8
SHR		0.87	0.85	0.88	0.87	0.88	0.85
EER		31.27	35.76	22.84	25.83	27.86	31.06
		Air temper	ature 30°C - Re	lative humidity	35% / Water ter	mperature In 10°	°C Out 15°C
Cooling capacity	kW	8.8	10.7	15.3	17	21.8	23.7
SHR		0.94	1	1	1	1	1
EER		40	38.09	27.34	30.44	32.53	35.35
		Air temper	ature 35°C - Re	lative humidity	30% / Water ten	nperature In 15°	°C Out 20°C
Cooling capacity	kW	8.9	10.7	15.4	17.1	22	23.8
SHR		0.94	1	1	1	1	1
EER		40.25	38.24	27.53	30.56	32.77	35.49
Rated air flow	m³/h	1785	2150	3530	3470	5115	4990
Total fan absorbed power	kW	0.2	0.3	0.6	0.6	0.7	0.7
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	48	50	51 52		52	
Dimensions [LxHxD]	mm	600x18	75x449	900x1875x449 1200x1875x449			375 x 449
Power supply	V/ph/Hz			400/3+N/50			

Performance data relating to Downflow versions. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm.

The JREF DX Centrifugal units are direct expansion units with centrifugal AC fans designed to be installed in small-sized premises such as server rooms and labs or for applications where accurate control of thermo-hygrometric parameters and round-the-clock operation are required. The internal design and the choice of components are primarily aimed at ensuring a compact design to make unit installation as flexible as possible.

JREF DX A Centrifugal units are air-condensed perimeter-mounted units in the JREF range; they are widely used for the cooling of Data Centers. The air-condensed solution offers **simple system design**, thanks to the absence of auxiliary circuits and pumps; the cooling circuit is managed by the cabinet, and both the indoor unit and the remote condenser are **easy to install**.

Versatile and flexible range

The JREF DX range is available with different refrigeration configurations:

Air condensing with remote condenser

Dry Cooler or Evaporative tower water condensing

Mains water condensing (15°C)

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components even with the units running. This makes routine maintenance easier in full compliance with safety standards.

Efficiency

The performance, reliability and efficiency of HiRef units are quaranteed by using the best quality components and by cleverly designed internal and external layouts.

- Refrigerant R410A: Also available with R513Á and R134a
- Scroll on/off compressors
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas (optional)
- · Humidity control through dehumidification and humidification (optional)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Electronic expansion valves (optional)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Long distance kits for optimal operation in the event of large distances between indoor and outdoor units (on request)

Safety in the server room

All models in the JREF DX A Centrifugal range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

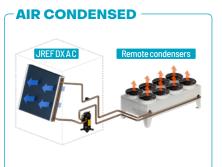
Green

HiRef is constantly committed to the search for refrigerants that have an increasingly reduced environmental impact. The use of ASHRAE Class A1 refrigerants, non-toxic and non-flammable, is essential for the "close control" application. All JREF DX A Centrifugal units are available with R134a and R513A refrigerants.

Remote condensers

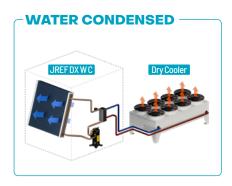
All units can be combined with HiRef remote condensers, choosing from **different combinations to meet all system needs. Oversize remote condensers** are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while **the compact condensers** on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single cooling circuit for **maximum reliability and redundancy of the system** or with a double cooling circuit, **to reduce installation spaces and costs.**

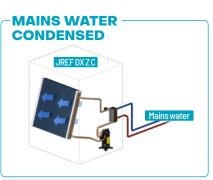
AIRFLOW CONFIGURATIONS



JREF DX A C		0060	0800	0100	0110	0130	0160	0190	0205		
			Air ten	perature 24°C -	Relative humidi	ty 50% / Outdoo	r Air Temperatu	re 35°C			
Cooling capacity	kW	6.5	8.6	11.2	12.3	14.6	16.2	19.7	22.6		
SHR		0.99	0.94	0.99	0.95	0.9	0.98	0.94	0.87		
EER		3.52	4.79	4.06	4.01	3.53	3.71	3.82	4.12		
Total absorbed power	kW	2.1	2.1	3.3	3.6	4.7	5	5.8	6.2		
		Air temperature 30°C - Relative humidity 35% / Outdoor air Temperature 35°C									
Cooling capacity	kW	7.1	9.4	12.4	13.7	16	18.3	21.9	24.4		
SHR		1	1	1	1	1	1	1	1		
EER		3.7	5.19	4.43	4.39	3.79	4.08	4.12	4.39		
Total absorbed power	kW	2.2	2.1	3.4	3.7	4.8	5.2	6	6.2		
Rated air flow	m³/h	1785	2150	3690	3530	3470	5115	4990	4990		
Number of circuits		1	1	1	1	1	1	1	1		
Number of compressors		1	1	1	1	1	1	1	1		
p @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	46	4	8	49	51	52	5	3		
Dimensions [LxHxD]	mm	600x1875x449 900x1875x449 1200x1875x4				1200x1875x449					
Power supply	V/nh/Hz				400/3	+N/50					

Performance data relating to Downflow versions with R410A refrigerant combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm.





JREF W Centrifugal units are water-condensed perimeter-mounted cabinets, and they use Dry Cooler water. The JREF units of this series are "monobloc" units inside which **the entire cooling circuit is concentrated**. Cooling is via a **brazed-plate exchanger made of stainless steel AISI 304**. All W units can be paired with **Hiref Dry Coolers**.

JREF Z Centrifugal units are water-condensed perimeter-mounted cabinets, and they use low temperature mains water or groundwater (15°C). The JREF units of this series are "monobloc" units inside which **the entire cooling circuit is concentrated**. Cooling is via a **brazed plate exchanger made of stainless steel AISI 304**.

AIRFLOW CONFIGURATIONS Upflow Downflow Displacement

- Refrigerant R410A: Also available with R513A and R134a
- Scroll on/off compressors
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas (optional)
- Humidity control through dehumidification and humidification (optional)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Electronic expansion valves (optional)

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

Safety in the server room

All models in the JREF W/Z Centrifugal range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components even with the units running. This makes routine maintenance easier in full compliance with safety standards.

Green

HiRef is constantly committed to the search for refrigerants that have an increasingly reduced environmental impact. The use of ASHRAE Class Al refrigerants, non-toxic and non-flammable, is essential for the "close control" application. All JREF W/Z Centrifugal units are available with R134a and R513A refrigerants.

JREF DX W C		0060	0800	0100	0110	0130	0160	0190	0205		
			Air temperature 24°C - Relative humidity 50% / Water 40°C - 45°C								
Cooling capacity	kW	6.7	8.1	11	12.1	14.9	16.3	19.8	21.8		
SHR		0.97	0.97	0.99	0.97	0.9	0.98	0.94	0.89		
EER		3.91	3.92	3.82	3.81	3.66	3.91	3.9	3.63		
Total absorbed power	kW	1.9	2.4	3.4	3.7	4.6	4.8	5.7	6.7		
			Air temperature 30°C - Relative humidity 35% / Water 40°C - 45°C								
Cooling capacity	kW	7.4	9	12.3	13.6	16.3	18.4	22	23.7		
SHR		1	1	1	1	1	1	1	1		
EER		4.25	4.38	4.32	4.33	4	4.42	4.33	3.95		
Total absorbed power	kW	2	2.3	3.4	3.7	4.6	4.8	5.7	6.7		
Rated air flow	m³/h	1785	2150	3690	3530	3470	5115	4990	4990		
Number of circuits		1	1	1	1	1	1	1	1		
Number of compressors		1	1	1	1	1	1	1	1		
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	46	4	8	49	51	52	į	53		
Dimensions [LxHxD]	mm	600x1875x449 900x1875x449 1200x1875x449									
Power supply	V/ph/Hz	400/3+N/50									

Performance data relating to Downflow versions with R410A refrigerant. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm.

JREF DX Z C		0060	0800	0100	0110	0130	0160	0190	0205
				Air temperature	24°C - Relative h	numidity 50% / \	Water 15°C - 30°C	C	
Cooling capacity	kW	7.4	9.3	12.4	14	17.1	19.5	23.7	25.8
SHR		0.89	0.88	0.92	0.89	0.84	0.88	0.86	0.82
EER		6.29	6.5	6.02	5.84	5.78	6.35	6.39	5.9
Total absorbed power	kW	1.4	1.7	2.6	3	3.5	3.7	4.4	5
				Air temperature	30°C - Relative h	numidity 35% / \	Water 15°C - 30°C	C	
Cooling capacity	kW	8	10.1	13.5	15.5	18.3	21.4	25.5	27.7
SHR		1	1	1	1	1	1	1	0.99
EER		6.81	7.07	6.59	6.51	6.2	6.94	6.88	6.32
Total absorbed power	kW	1.4	1.7	2.6	2.9	3.5	3.7	4.4	5
Rated air flow	m³/h	1785	2150	3690	3530	3470	5115	4990	4990
Number of circuits		1	1	1	1	1	1	1	1
Number of compressors		1	1	1	1	1	1	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	46		48	49	51	52	Ę	3
Dimensions [LxHxD]	mm	600x18	75 x 449		900x1875x449			1200x1875x449	
Power supply	V/ph/Hz				400/3	+N/50			

Performance data relating to Downflow versions with R410A refrigerant. I Also available with 60 Hz power supply. | Model height Displacement 2125 mm.

Our chilled water FanWall HBCV series air conditioners are designed for technological environments where a compact footprint is a requirement – without any impact on these units' cooling output capacity. An in-depth CFD (computational fluid dynamics) analysis has allowed every last constructive detail to be designed so as to minimise internal airflow pressure drops and, therefore, fan power consumption. At the same time, the large surface of the finned pack exchanger minimises the approach temperatures between inlet air and outlet water, maximising system efficiency.

Ventilation EC 2.0

The use of standard-equipment EC plug fans across the whole range - designed to adjust the air flow according to the thermal load - results in efficient use of the electricity for ventilation purposes, with a positive impact on the system PUE. Extended range speed adjustment is carried out via MODBUS protocol. The emergency speed function allows for fan operation consistency even in the event of microprocessor malfunctions.

Maximum possible redundancy

To ensure system operation continuity, the FanWall HBCV range makes it possible to have a **fully redundant refrigeration circuit:** a double coil and double water adjustment valve allow the server room to be cooled **even when either circuit fails.**

- Stainless steel condensate drain pan
- Fan speed modulation based on thermal load (constant ΔT)
- Constant-flow ventilation modulation (Airflow Control), optional
- Double power supply with automatic switch (on request)
- Instantaneous reading of the supplied cooling capacity (optional)

Finned pack coil with hydrophilic coating

All models in the FanWall HBCV range feature heat exchange coils with hydrophilic coating. This special coating together with adequate adjustment of air through-flow speeds - helps condensate collection and outflow during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Blown finned coil

According to a specific design choice, this finned coil is installed downstream of the fans. This ensures a more even distribution of the delivery air to the racks, **minimising turbulence in the air flow.**

Accurate regulation with multiple types of valves

The adjustment valve with 0-10V servomotor (standard on the whole range) can be obtained in a 2-way (requires variable flow system) or 3-way version. The other versions available with configurator are those with spring return servomotor or independent pressure valves. The flow control performance of this type of valve guarantees adjustment accuracy, while at the same time maintaining the hydronic balance in the system.

Ventilation adjustment

Depending on the air distribution logic in the server room, it is possible to adjust the machine on-board ventilation system to ensure **a constant air flow rate** (airflow control) **or a constant available overpressure** (ΔP control). The latter is particularly useful if a floating floor is used.

Easier scheduled maintenance

The unit has been designed with the utmost care to grant front (air inlet side) access to internal components even with the units running. This makes routine maintenance easier in full compliance with safety standards.

FanWall		051	102	121	171	242	342
Geometry B		Air tempera	ture 30°C - Rel	ative humidity	35% / Water te	emperature In 1	0°C Out 18°C
Cooling capacity	kW	48.5	97	118.2	173.4	236.4	346.8
SHR		1	1	1	1	1	1
EER		69.3	69.29	62.21	59.79	62.21	59.79
Geometry C		Air temperat	ture 30°C - Rela	ative humidity	35% / Water te	emperature In 1	0°C Out 22°C
Cooling capacity	kW	44.9	89.8	110.2	164.4	220.4	328.8
SHR		1	1	1	1	1	1
EER		64.1	64.1	58	56.7	58	56.7
Geometry B		Air tempera	ture 35°C - Rel	ative humidity	25% / Water te	emperature In 1	0°C Out 18°C
Cooling capacity	kW	63.7	127.4	157.1	230.3	314.2	460.6
SHR		1	1	1	1	1	1
EER		91	91	82.68	79.41	82.68	79.41
Geometry C		Air temperat	ture 35°C - Rela	ative humidity 2	25% / Water te	emperature in 1	0°C Out 22°C
Cooling capacity	kW	60.6	121.2	148.9	219.8	297.8	439.6
SHR		1	1	1	1	1	1
EER		86.6	86.6	78.4	75.8	78.4	75.8
Rated air flow	m ³ /h	8700	17400	21200	31100	42400	62200
Total fan absorbed power	kW	0.7	1.4	1.9	2.9	3.8	5.8
Dimensions [LxHxD]	mm	1500 x1475 x1300	1500 x2950 x1300	2950 x1475 x1300	4000 x1475 x1300	2950 x2950 x1300	4000 x2950 x1300
Power supply	V/ph/Hz			400/3	+N/50		
Module number		1	2	1	1	2	2

Data declared for chilled water version. | Also available with 60 Hz power supply. | The dimensions shown refer to standard models but can be customised according to application requirements.

HTI CW units are split-type air conditioners intended for small and medium-sized Data Centers. Designed for **ceiling or wall mounting**, they are suitable for air conditioning of control centres with limited internal space or space entirely taken up by technological equipment. Thanks to the **rational layout of components and wide range of available accessories**, these units are **easy to install and suitablefor different shelter configurations**.

- Temperature control through heating and post-heating systems with electric heating elements (optional)
- Humidity control through dehumidification and humidification with external humidifier (optional)
- Fan speed modulation based on thermal load (constant ΔT)
- Version available with dual power supply for emergencies: 230/400V network and 24/48VDC backup supply
- Epoxy powder painted structural metalwork supplied as standard
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Instant water inlet/outlet temperature reading function (on request)

Finned pack exchanger with hydrophilic coating.

All models in the HTI CW range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Ventilation EC

EC PLUG fans, standard on the entire range, make it possible to vary the air flow according to the thermal load. Their accurate adjustment allows an efficient use of power for ventilation and **a consequent reduction of the system's PUE.** Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation **even in the event of microprocessor malfunctions.**

Maximised Redundancy

In case of mains power + uninterruptible power supply in direct current (DUAL), the (optional) Free-Cooling mode ensures correct internal thermal conditions, **even** in the event of blackouts. This ensures the continuity of service of the system.

Simple and fast installation

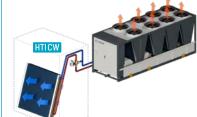
The units can be installed, as needed, on the ceiling or on the wall. Thanks to the use of EC PLUG fans, air conditioners in the HTI CW series guarantee: optimal air distribution, efficiency, energy savings, reliability and compactness, whatever the configuration chosen.

Easier scheduled maintenance

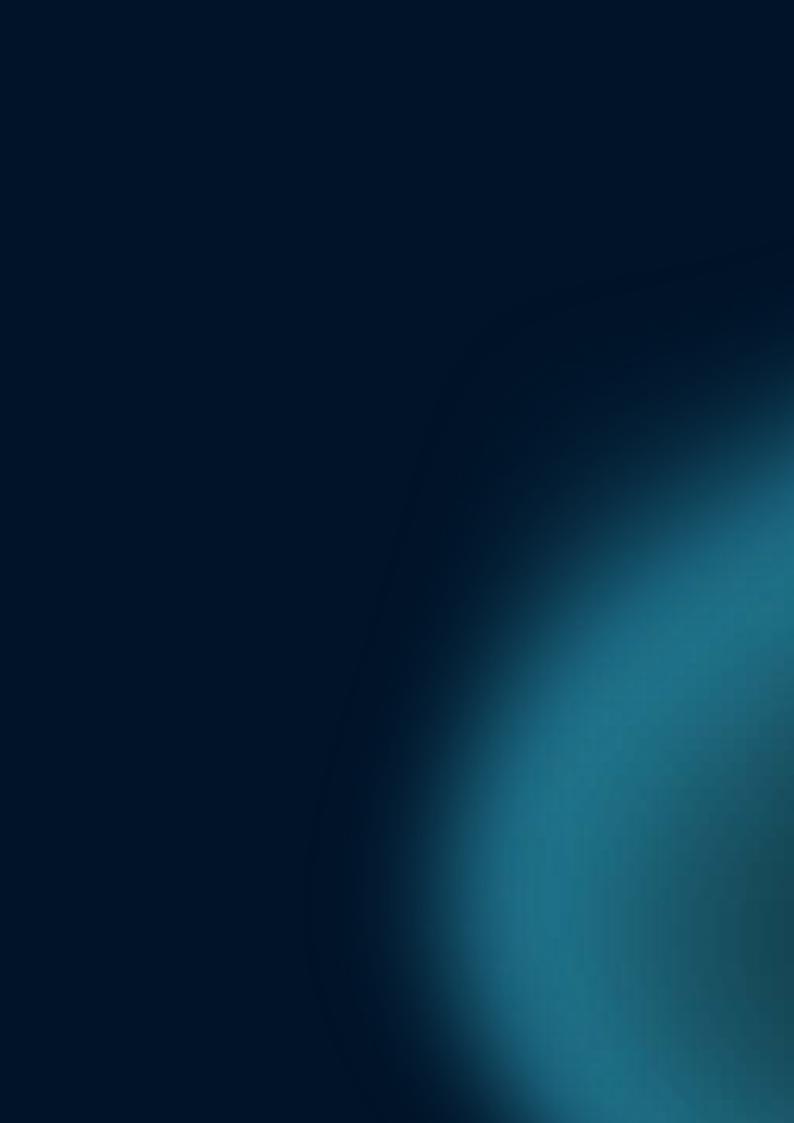
The unit has been painstakingly designed to ensure frontal access to components. This aspect, combined with the complete extractibility of filters and Free-Cooling damper (if present), greatly facilitates routine maintenance operations.

Accurate regulation with multiple types of valves

All units in the HTI CW range have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system. It is also possible to mount a servo motor with spring return and pressure-independent valves on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.


Maximised energy saving with direct Free-Cooling

The units can, on request, be equipped with a direct Free-Cooling module. This system, which can also be installed inside an already operational unit, reduces the work of the chiller units in generating chilled water (partial Free-Cooling), and in a state of complete Free-Cooling can be switched off. This naturally has an important effect on the system's PUE.



CHILLED WATER

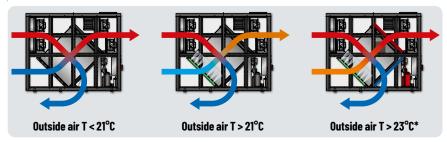
	Ceiling mount	The same of the sa	

HTI CW		0073	0105	0120	0145	0310	0380			
		All	R TEMPERATURE 27°C	- RELATIVE HUMIDITY	40% / WATER TEMPE	RATURE IN 7°C OUT 12	°C			
Cooling capacity	kW	8.9	10.1	13.1	14.6	38.4	45.4			
SHR		0.82	0.78	0.83	0.79	0.92	0.85			
EER		52.88	51.03	52.11	49.35	33.25	36.78			
		All	AIR TEMPERATURE 30°C - RELATIVE HUMIDITY 35% / WATER TEMPERATURE IN 10°C OUT 15°C							
Cooling capacity	kW	7.9	8.5	11.5	12.5	36.3	41.7			
SHR		0.94	0.9	0.96	0.91	1	0.95			
EER		47.07	43.27	45.54	42.39	31.37	33.78			
		Alf	R TEMPERATURE 35°C	- RELATIVE HUMIDITY	30% / WATER TEMPER	ATURE IN 15°C OUT 20)°C			
Cooling capacity	kW	7.9	8.4	11.3	12.4	35.6	41.8			
SHR		0.98	0.96	1	0.96	1	0.99			
EER		46.69	42.89	44.76	42.02	30.84	33.82			
Rated air flow	m³/h	1300	1300	1950	1950	7000	7000			
Total fan absorbed power	kW	0.2	0.2	0.3	0.3	1.2	1.2			
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	53	55	54	56	6	6			
Dimensions [LxHxD]	mm	1050x358x936 1150x408x1026				1500x6	85 x 1096			
Power supply	V/ph/Hz	230/1/50				400/3	+N/50			

Also available with 60 Hz power supply. | Units can only be installed on the ceiling for sizes 0310-0381.

CHiRef

EVAPORATIVE AIR CONDITIONER AIR-TO-AIR



The combination of the evaporative cooling system with the air/air cross-flow exchanger of the HDB-DataBatic range extends indirect Free-Cooling for more hours during the year and more climate zones. The reduction, and in some cases cessation, of mechanical operation has two benefits: it reduces operating costs for greater annual energy efficiency (reduced PUE) and reduces deployment costs, thanks to the lower installed power. HDB units can accommodate the "cooling circuit" option, and are entirely factory assembled in a monobloc solution to facilitate installation operations.

Direct expansion or chilled water integration

If external climatic conditions cannot satisfy internal load requirements using only indirect Free-Cooling + Evaporative Cooling, the mechanical cooling system comes into play. There is thus the option of a cooling circuit with **BLDC modulating compressors specific for R410A**, **electronically controlled expansion valve and hydrophilically treated fin evaporator.** Alternatively, a chilled water coil can be installed, to be connected to an external chiller.

* Wet bulb condition for a 1 MW Data Center (Redundancy N + 1) in Amsterdam at 36°C -25%; Delivery air T 24°C; Max T of air delivery 26°C

- Possibility of managing multiple units in parallel in the same system
- High efficiency through-flow heat exchanger with epoxy surface treatment for protection against corrosion (Eurovent certification)
- Management of overpressure in the air distribution plenum (ΔP Control)
- Side and front access to all components, even when units are operational, to make maintenance easier and avoid system downtime situations
- Panelling developed and assembled in accordance with standard UNI 1886
- Air renewal kit with modulating dampers (Fresh air kit)
- Ultrasonic humidifier
- Kit for applications at low outdoor air temperatures (up to -40°C)

Plug type fans with EC motor

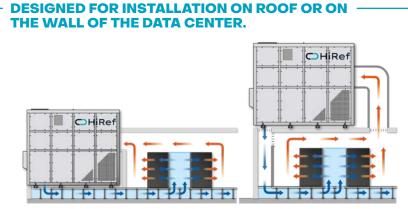
EC type ventilation on both air flows provides:

- higher efficiency at partial loads;
- · reduced noise emissions;
- precise tracking of thermal load variations.
 Fan consumption, in the "hot swappable" configuration, can be displayed in real time on the machine's display

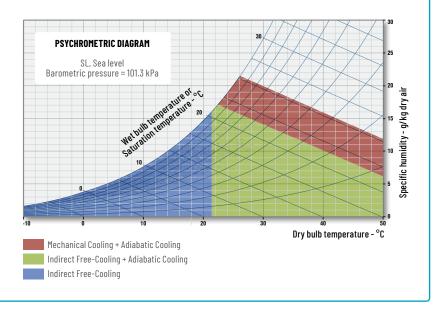
Evaporative cooling on the air flow from the outside

HDB - DataBatic units are equipped with **Evaporative Cooling technology,** based on the use of nozzles that spray water onto the air flow coming from outside.
Evaporating water cools the air due to an adiabatic effect, the air then passes the cross-flow exchanger at a temperature close to the wet bulb temperature, **extending the period of time in which it is possible to exploit the Free-Cooling effect.** Finally, the system is of the **multistep type** in respect of the air flow, in order to **optimize saturation efficiency.**

Indirect Air-Side Free-Cooling

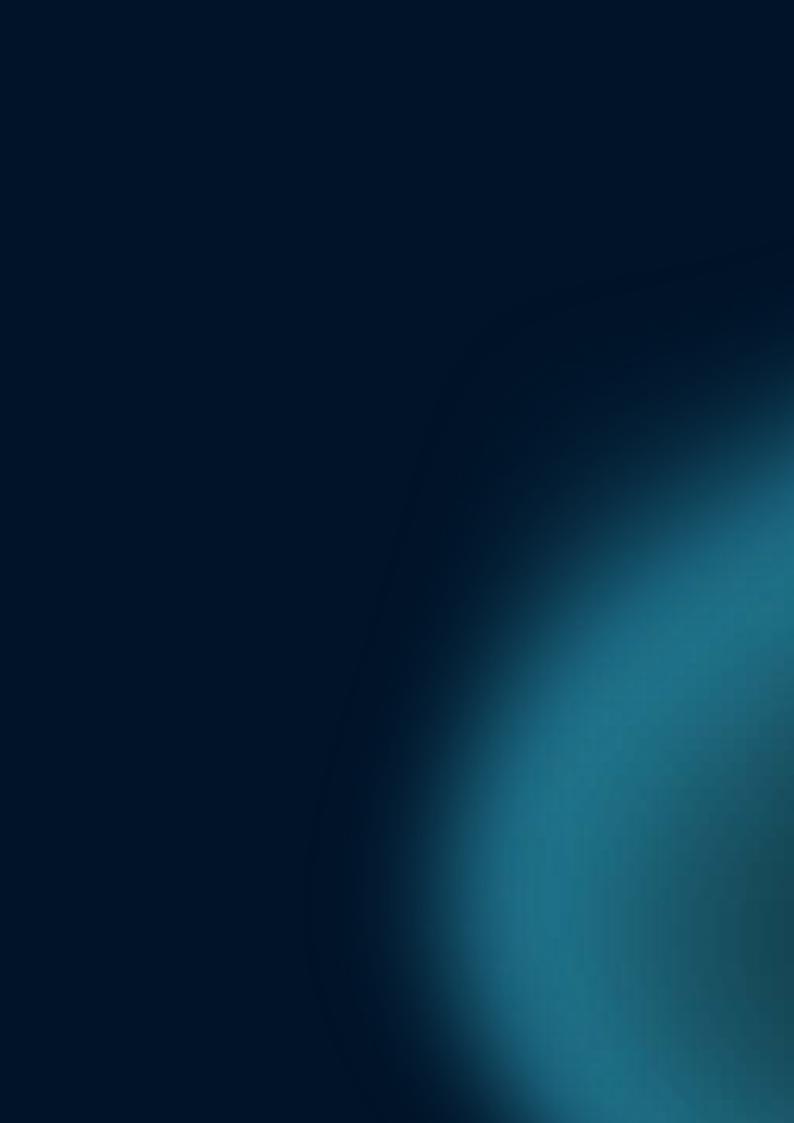

Indirect Air-Side Free-cooling Indirect Free-Cooling, as opposed to direct:

- does not create contamination between the indoor air of the Data Center and outdoor air;
- blocks the entry of dust and pollutants into the Data Center without the need for additional filtering:
- there is no latent load increase.


The result is a clear reduction in energy consumption for system management.

Water saving function and legionella-free system

Pump adjustment logic, of the electronic and modulating type, makes it possible **to optimize air saturation** and at the same time Water Usage Effectiveness (WUE) and energy consumption. The particular configuration of the hydraulic circuit and the algorithms used for its management guarantee **the necessary replenishment of water in the system** to avoid high salt concentrations **and prevent water from stagnating in the collection tank,** with the risk of the spread of legionellosis.


Example of use for a 1 MW Data Center (Redundancy N+1) in Amsterdam at 36° C -25%; Air temp. 24° C; Max air temp. in 26° C

DataBatic		0060	0100	0200	0300		
Air temperature 36°C - Relativ	e humidity 25%	6 / Supply air temperatu	re 24°C/ SHR = 1 / Outdoo	r air temperature 35°C -	Relative humidity 30%		
Rated air flow	m³/h	15000	27000	53000	82500		
Minimum cooling capacity	kW	10	60	100	200		
Maximum cooling capacity	kW	60	100	200	330		
Dimensions [LxHxD]	mm	2750x2650x1180	4200x2650x2250	4700x3600x2250	4700x3600x3100		
Power supply	V/ph/Hz	/Hz 400/3+N/50					

Data declared with chilled water or direct expansion circuit working in top up cooling mode. | Also available with 60 Hz power supply. | The dimensions shown refer to standard models without accessories and with Free-Cooling and top up cooling execution.

CHiRef

HIGH DENSITY COOLING

DATA CENTER

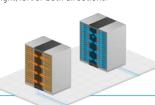
DIRECT EXPANSION AIR CONDITIONERS FOR HIGH DENSITY RACKS WITH MODULATING COMPRESSORS

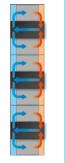
NRCD > 12.4-50.1 kW

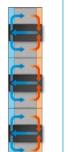
NRCV > 13.3-37.4 kW

The rack coolers in the NRCD/NRCV range are an ideal solution for the cooling of small-to-medium size Data Center racks where **precision control of** hygrothermal parameters is required 24/7. They are particularly suitable for **small installations** where a chiller cannot be installed or where water in the Data Center is not allowed. Internal design and component selection focus on the achievement of very high energy efficiency levels to minimise running costs of the entire system. NRCD/NRCV units have an external remote condenser, which guarantees efficiency and reliability. In-rack or in-row configuration Depending on how rack cooling is done - by creating hot and cold aisles in the Data Center via compartmentalisation and localised cooling - the NRCD/NRCV range comes in two different configurations.

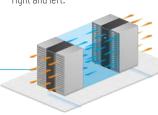
AIR CONDENSED

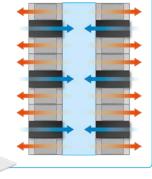



- Refrigerant R410A
- EC Fans
- Twin rotary and Scroll inverter compressors
- Electronic expansion valves (optional)
- Advanced programmable microprocessor control with LCD display
- Humidity control through dehumidification and humidification (optional)
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (optional)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)


IN RACK

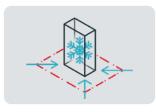
IN RACK: Configuration that generates a closed circuit between rack cooler and rack cabinet. The air can be drawn in and delivered from the right, left or both directions.



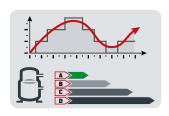


IN ROW

IN ROW: Configuration in which cold air is released into the "cold aisle" to each rack cabinet, and hot air from the surrounding environment is drawn in by the rack cooler. The air can be delivered from the front, right and left.


Hot swappable fans

In order to minimize machine shutdown, a failed fan can be replaced without turning off the unit, thanks to the use of the protective basket and connectors for the power and control section. Fan replacement thus becomes a routine maintenance operation.


Safety in the server room

All models in the NRCD/NRCV range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

High power density

The internal design and the special component layout allows for an evaporating coil with an extensive heat exchange surface area. The unit footprint is still small, ensuring optimal use of space in the server

Power modulation

The units adapt quickly to the Data Center's cooling requests. Thanks to the inverter-controlled compressor. performance can be modulated to **up to 25%** of the rated value, thus reducing consumption. This ensures continuous operation of the unit even at low loads, without switching cycles on and off.

H		oor unit	0
100	0200	0260	0300
ir tempe	rature 30°C -	Relative humidi	ity 35% / Outo

NRCD		0100	0200	0260	0300	0400	0450
		Air temperature 30°C - Relative humidity 35% / Outdoor air Temperature 35°C					
Cooling capacity	kW	12.4	21.8	26.1	29.4	41.3	46.2
SHR		1	0.91	1	0.82	1	0.99
EER		3.9	2.89	3.46	2.55	3.59	3.18
Total absorbed power	kW	3.4	8.2	8.1	12.4	13.1	16.1
		Air tempe	or Air tempera	ature 35°C			
Cooling capacity	kW	13.1	23.6	28.6	31.6	45.5	50.1
SHR		1	0.95	1	0.85	1	1
EER		4.04	3.07	3.75	2.67	3.85	3.33
Total absorbed power	kW	3.5	8.4	8.2	12.7	13.4	16.6
Rated air flow	m³/h	2700	4000	5000	4250	9000	9000
Number of circuits		1	1	1	1	1	1
Number of compressors		1	1	1	1	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	64	66	60	67	7	73
Dimensions [LxHxD]	mm	300×2000×1200		600 x2000 x1200	300 x2000 x1200	600×2000×1200	
Power supply	V/ph/Hz	230/1/50			400/3+N/50		

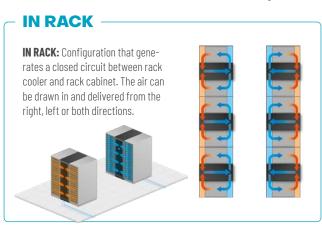
rowei suppiy		230/1/30	400/3*11/30			
NRCV		0140	0240	0330		
		Air temperature 30°C - F	Relative humidity 35% / Outdo	or air Temperature 35°C		
Cooling capacity	kW	13.3	24.6	34.6		
SHR		1	1	0.88		
EER		4.06	3.17	3.1		
Total absorbed power	kW	4.1	9.1	13.1		
		Air temperature 35°C - Relative humidity 30% / Outdoor Air temperature 35°C				
Cooling capacity	kW	14.5	26.9	37.4		
SHR		1	1	0.91		
EER		4.36	3.36	3.3		
Total absorbed power	kW	4.1	9.3	13.3		
Rated air flow rate indoor unit	m³/h	3100	5300	5300		
Rated air flow rate outdoor unit m ³ /h		6400	9300	16300		
Number of circuits		1 1		1		
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	62	6	3		
Lp @ Nominal rpm ; dist.= 10 m Q=2			46 46			
Dimensions indoor unit [LxHxD]	mm	300x20	00x1200	300x2000x1200		
Dimensions outdoor unit [LxHxD]	mm	1250x460x882	1565x605x1275	1965x950x1322		
Power supply indoor unit	V/ph/Hz		230/1/50			
Power supply outdoor unit	V/ph/Hz	230/1/50	400/3+N/50	400/3+N/50		

Ventilation EC

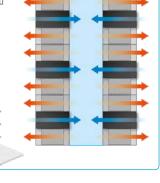
EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT . Their accurate adjustment allows an efficient use of power for ventilation and a consequent **reduction of** the system's PUE. Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation even in the event of microprocessor malfunctions.

Sliding control panel

For 300 mm wide structures, the electrical panel is designed to take up as little space as possible without interfering with air distribution over the whole working height of the unit. A "sliding drawer" structure has been used, making access possible during commissioning and extraordinary maintenance operations. This configuration also prevents tangling of the wiring.



HRCC units are chilled water cooler racks. They offer an ideal solution for the cooling of Data Center racks where **precision control of hygrothermal parameters is required 24/7**. They are particularly suitable for integration into chilled water systems with Free-Cooling chillers, given the possibility of making these air conditioners work even with **higher water temperatures than the usual 7/12°C or 10/15°C values**. The internal design and the choice of components are aimed at obtaining **high levels of energy efficiency and guaranteeing service continuity**, the second being a key requirement in this type of application with **high/very high power density**.


Depending on how rack cooling is done - by creating hot and cold aisles in the Data Center or via compartmentalisation and localised cooling - the HRCC range comes in two different configurations: On request Configuration that generates a closed circuit between rack cooler and rack cabinet. The air can be drawn in and delivered from the right, left or both directions.

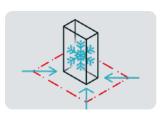
- Advanced programmable microprocessor control with LCD display
- Humidity control through dehumidification and humidification (optional)
- Fan speed modulation based on thermal load (constant ΔT)
- Air filter class G3 as standard. Air Filters G4, M5, F7 (optional)
- Double power supply with automatic switch (optional)
- Constant-flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (optional)
- Instant reading of water flow rate, water inlet and outlet temperatures, or supplied cooling capacity (optional)

IN ROW

IN ROW: Configuration in which cold air is released into the "cold aisle" to each rack cabinet, and hot air from the surrounding environment is drawn in by the rack cooler. The air can be delivered from the front, right and left.

Ventilation EC

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT . Their accurate adjustment allows an efficient use of power for ventilation and a consequent **reduction of** the **system's PUE.** Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation **even in the event of microprocessor malfunctions.**


Hot swappable fans

In order to minimize machine shutdown, a failed fan can be replaced without turning off the unit, thanks to the use of the protective basket and connectors for the power and control section. Fan replacement thus becomes a routine maintenance operation.

Safety in the server room

All models in the range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

High power density

The internal design and the special component layout allows for an evaporating coil with an extensive heat exchange surface area. The unit footprint is still small, ensuring optimal use of space in the server room.

Sliding control panel

For 300 mm wide structures, the electrical panel is designed to take up as little space as possible without interfering with air distribution over the whole working height of the unit. A "sliding drawer" structure has been used, making access possible during commissioning and extraordinary maintenance operations. This configuration also prevents tangling of the wiring.

HRCC		0200	0250	0450	0510		
		Air temperature 30°C – Relative humidity 35% / Water temperature In 10°C Out 15°C					
Cooling capacity	kW	20.1	27.7	46.2	57		
SHR		1	1	1	1		
EER		43.54	38.35	31.1	37.27		
		Air temperature 35°C - Relative humidity 30% / Water temperature In 15°C Out 20°C					
Cooling capacity	kW	20.2	27.8	46.4	57.2		
SHR		1	1	1	1		
EER		43.69	38.44	31.21	37.37		
Rated air flow	m³/h	4000	5300	9000	11000		
Total fan absorbed power	kW	0.5 0.7 1.5					
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	62	65	70	67		
Dimensions [LxHxD]	mm	300x20	00x1200	600x2000x1200			
Power supply	V/ph/Hz	230/1/50		400/3+N/50			

Also available with 60 Hz power supply.

REMOTE CONDENSERS

The HiRef remote condensers are outdoor units that can be combined with air-condensed indoor units such as cabinets in the A-D series and NRCD rackcoolers. HiRef offers a **wide range of condensers**, suitable for working with refrigerants R410A, R134a, R454B, R407C. The condensers, used with dual-circuit units, are available with a single cooling circuit for **maximum reliability and redundancy of the system** or with a double cooling

circuit, to reduce installation spaces and costs. The models have an aluminum alloy and galvanized sheet frame, ideal for ensuring high corrosion resistance, protection of copper pipes and solidity. The galvanized sheet external panels have an anti-corrosion and anti-UV radiation polyester coating.

- Power supply 230V single phase or 400V three phase
- Power supply from HiRef indoor unit (standard) or stand alone (on request)

Silent operation

The remote condensers are also available in low noise emission versions, ideal in areas where a high level of acoustic comfort must be maintained.

Finned coil

The finned-coil heat exchangers are made with copper tubes and, depending on the model, wavy or corrugated aluminium fins. The standard spacing between the fins is 1.8-2-2.1 mm, depending on the model, offering high heat exchange efficiency without affecting the ease of routine cleaning.

Customization

The units can be customized on request to meet the customer's design needs. Among the various ontions:

- special treatment for the finned-coil exchanger, including epoxy treatment, offering good resistance to corrosive environments, or copper fins for installation in marine environments;
- increased fin spacing to reduce soiling and facilitate cleaning in sandy environments:
- special ductable condensers for installation in closed places.

Versatility

As an alternative to vertical installation with horizontal air flow, as standard, horizontal installation with upward air flow is possible, with the use of a leg kit that can be ordered separately.

Efficiency

Depending on the model, the units mount axial fans with diameters of 350-450-500-630 mm. The fans, with 4 or 6 poles, can be adjusted using a speed regulator from the indoor unit or mounted on the machine. The units are also available with high efficiency EC fans **for low operating consumption and reliable control of the condensing temperature thanks to electronic speed regulation.**

DRY COOLER

HiRef Dry Coolers are outdoor units that can be combined with water-condensed indoor units such as cabinets in the W - F - K series. HiRef offers a wide range of Dry Coolers suitable for working with a water-glycol mixture up to 60%. They are made with frame in aluminium alloy and galvanized sheet steel that ensures corrosion resistance, copper pipe protection and solidity. The external panels are made of galvanized sheet metal finished with corrosion- and UV-resistant polyester paint.

- Power supply 230V single phase or 400V three phase
- Power supply from HiRef indoor unit (standard) or stand alone (on request)

Finned coil The finned-coil heat exchangers are made with copper tubes and, depending on the model, wavy or corrugated aluminium fins. The standard spacing between the fins is 2 mm, offering high heat exchange efficiency without affecting the ease of routine cleaning. **Customization** The units can be customized on request to meet the customer's design needs. Among the various • special treatment for the finned-coil exchanger, including epoxy treatment, offering good resistance to corrosive environments, or copper fins for installation in marine environments; **Versatility** increased fin spacing to redu-As an alternative to vertical instalce soiling and facilitate cleaning lation with horizontal air flow, as in sandy environments. standard, horizontal installation with upward air flow is possible, with the use of a leg kit that can be ordered separately. **Efficiency**

Silent operation

The Dry Coolers are also available in low noise emission versions, ideal in areas where a high level of acoustic comfort must be maintained.

Depending on the model, the units mount axial fans with diameters of 350 - 500 - 630 - 800 mm. The fans, with 6 or 8 poles, can be adjusted using a speed regulator from the indoor unit or mounted on the machine. The units are also available with high efficiency EC fans for ${\bf low\ operating}$ consumption and reliable control of the condensing temperature thanks to electronic speed regulation.

HiRef S.p.A. Viale Spagna, 31/33 - 35020 Tribano (PD) Italy Tel. +39 049 9588511 - Fax +39 049 9588522 - info@hiref.it

HiRef S.p.A. reserves the right, at any time, to introduce any necessary changes and improvements to its products without prior notice.

Reproduction, even partial, of this catalogue is forbidden without a written permission from HiRef S.p.A.

© Copyright HiRef S.p.A. 2024