

Perimeter-mounted units Perimeter-mounted units APPLICATION SYSTEM TYPE COOLING CAPACITY APPLICATION SYSTEM TYPE COOLING CAPACITY PAGE PAGE PAGE PAGE Mod. K **21-126** (kW) 6 PAGE PAGE PAGE PAGE Med: **₹ 7=27** (kW) Mod. Z 10-124 (kW) PAGE PAGE PAGE Mod. K 11-101 (kW) Mod. Q 13-110 (kW) PAGE Med: **Z** 7-20 (kW) PAGE Mod. Z 27-153 (kW)

Perimeter-mounted units

APPLICATION

SYSTEM TYPE

COOLING CAPACITY

PAGE **25**

Evaporative air conditioner air-to-air

APPLICATION

SYSTEM TYPE

COOLING CAPACITY

PAGE **27**

High Density Cooling

APPLICATION

SYSTEM TYPE

COOLING CAPACITY

Mod. NRCW **13-37** (kW)

PAGE **29**

PAGE

Mod. MRACK DX 3-9 (kW)

PAGE

Technical data are subject to change without notice. Do not use these data in the design stage.

CHiRef

PERIMETER-MOUNTED UNITS

Platform TRF Evolution

Inspired by the best of TREF Revolutionary design

Efficiency, flexibility, reduced footprint, optimization of internal layout

TRF Evolution is the new HiRef solution for **perimeter cabinets**. It brings together in a single and revolutionary product the many product ranges already on offer, from chilled-water to direct expansion units. The new range comes with a host of improvements made to the main units for Data Center cooling. Components of the new TRF platform have everything needed to provide **the most efficient** Data Center cooling solution, ensuring reliability, precise control of thermo-hygrometric conditions and the flexibility to adapt to different working conditions.

The depth has been increased to 890 mm and 960 mm, with a finned-coil exchanger 30% larger in the NRG versions and 16% larger in the TRF CW versions. There is a rise in specific capacity (kW/ Sq.m) and efficiency, thanks to a next-generation fan that **increases performance by 15%**. Each HiRef unit is also customizable in the co-design phase with the client or the designer, depending on the specific application, making **solutions modular and more efficient on a case-by-case basis**.

 hydronic circuit: the configurations A, B and C have been developed to be able to choose the best solution for the Data Center's actual operating conditions:

Geometry "A"

Designed to work with high water flow rates and $\Delta T = 5^{\circ}C$. Ideal for existing solutions

Geometry "B"

Designed to work with moderate water flow rates and ΔT = 8°C. Ideal for next-generation Data Centers

Geometry "C"

Designed to work with low water flow rates and $\Delta T = 12^{\circ}C$. Ideal for the very latest Data Centers

Adjustment

All TRF units are fitted with water valves for adjustments. In addition to the 2-or 3-way modulating valves, pressure-independent regulating valves can be fitted 0n request. These offer a host of benefits, including reduced commissioning costs, greater accuracy and stability in regulating cooling capacity.

Reduced footprint

TRF CW

CHILLED WATER
PERIMETER-MOUNTED UNITS
FOR DATA CENTERS

TRF CS

CHILLED WATER
PERIMETER-MOUNTED
CONDITIONERS FOR
DATA CENTERS WITH
UNDERFLOOR
FANS - SLIM EDITION

TRF CF

CHILLED WATER
PERIMETER-MOUNTED
CONDITIONERS FOR
DATA CENTERS WITH
UNDERFLOOR FANS

Direct expansion

NRG perimeter-mounted units are the HiRef solution in the TRF Evolution platform for applications with direct expansion units. The use of an inverter-controlled compressor allows NRGs to find a space in low energy consumption solutions with high air conditioning accuracy. In the various configurations you can choose the most suitable energy source - air or water. With **Dual Cooling** complete redundancy is possible thanks to the dditional chilled water coil. Finally, with the **indirect water** Free-Cooling version, energy consumption can be minimized, taking advantage of low room temperatures to chill water without using the compressor.

NRG

PERIMETER MOUNTED UNITS FOR DATA CENTRES WITH MODULATING COMPRESSORS

Chilled water

units are possible;

Chilled water units are available in several

• broad power range: from 40 kW for TRF

CW units to 350 kW for TRF CF units;

• air flow: various air flow configurations

for the TRF CW models and fan module

configurations for the TRF CS and TRF CF

The new chilled water air conditioners of the TRF CW series are particularly suitable for IT facilities where **temperature and air flow need to be continuously monitored**. The components of the TRF CW unit offer the most efficient solution for **Data Center cooling**, ensuring **reliability**, **precise control of thermohygrometric conditions** and the **flexibility** to adapt to different working conditions.

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes **routine maintenance easier in full compliance with safety standards.**

Ventilation adjustment

Depending on the air distribution logic in the server room, it is possible to adjust the machine on-board ventilation system to ensure a **constant air flow rate** (airflow control) **or a constant available overpressure** (ΔP control). The latter is particularly useful if a floating floor is used.

Double circuit

Chilled water units are also available with a double circuit. In this version, the supply is via **two different hydraulic circuits** that can offer the **utmost operational continuity if one of the two circuits malfunctions.** Each circuit is equipped with a regulating valve.

- Temperature control through heating and post-heating systems using electric heating elements, additional hot water coil or both
- Humidity control through dehumidification and humidification
- Humidifier installed on board the machine
- Fan speed modulation based on thermal load (constant ΔT)
- Hydraulic connections from the bottom of the unit
- Broad choice of accessories including basic modules, plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Double panelling only on the front doors or on the whole machine (on request)
- Instant reading of water flow rate, water inlet and outlet temperatures, or cooling capacity (on request)

Finned pack coil with hydrophilic coating

All models in the TRF CW range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection and outflow during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Accurate regulation with multiple types of valves

All units in the TRF CWrange have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system or with servo motor with spring return.

Pressure-independent valves can also be fitted on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.

New design: efficiency, flexibility and optimization of internal layout

Internal spaces have been completely redesigned for a better distribution of components.

The new internal layout features a larger pack heat exchanger and a state-of-the-art fan for maximum air flow and efficiency. Following a painstaking dynamic fluid study, the filtering surface has also been expanded, now it is distributed over the entire coil to further reduce air pressure drops.

Ventilation EC 2.0

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT . Their accurate adjustment allows an efficient use of power for ventilation and a consequent reduction of the system's PUE. The speed, with extended range, is adjusted via the Modbus protocol. Finally, the "emergency speed" function allows for fan operation even in the event of microprocessor malfunctions.

Guaranteed flexibility

With three different types of heat exchangers, each optimised to a specific water ΔT value (difference in water temperature between inlet/outlet), we ensure **high flexibility in adapting to the system or liquid chillers already in operation,** without compromising cooling performance:

• **Geometry A** for $\Delta T = 5^{\circ}C$

• **Geometry B** or $\triangle T = 8^{\circ} C$

• Geometry C for △T = 12°C

TRF CW		040	060	070	080	090	100	110	130	170	240
		0.10									
Version A									e In 7°C Out 1		
Cooling capacity	kW	38.1	58	64.4	80.8	85.3	105.5	103.1	137.2	177.2	257.1
SHR		0.86	0.79	0.82	0.78	0.81	0.77	0.83	0.77	0.77	0.74
EER		31.07	39.97	33.28	37.31	34.93	40.41	33.65	40.43	36.02	34.82
ersion A			Air	temperature	30°C - Relat	ive humidity	35% / Water	temperatur	e In 10°C Out 1	5°C	
ooling capacity	kW	43.3	59.6	67.9	80.8	89.9	104	112.3	133.7	172.7	236.3
HR		1	0.99	1	0.99	1	0.97	1	0.99	0.99	0.94
ER		35.36	41.06	35.05	37.33	36.82	39.84	36.66	39.41	35.11	32.0
ersion B			Air	temperature	30°C - Relat	ive humidity	35% / Water	temperatur	e In 10°C Out 1	8°C	
ooling capacity	kW	38.9	55.2	63.3	74.8	82.4	98.4	104.8	126.3	163.1	229.5
HR		1	1	1	1	1	1	1	1	1	0.96
ER		31.69	38	32.69	34.54	33.73	37.69	34.19	37.2	33.15	31.08
ersion C			Air	temperature	30°C - Relati	ve humidity	35% / Water	temperature	e In 10°C Out 2	22°C	
poling capacity	kW	33.4	49.8	54.4	67.5	73.2	87.6	90.1	111.8	144.4	210.2
IR		1	1	1	1	1	1	1	1	1	1
ER		27.23	34.32	28.1	31.2	30	33.55	29.39	32.94	29.35	28.47
ersion A			Air	temperature	35°C - Relati	ve humidity	30% / Water	temperature	e In 15°C Out 2	20°C	
ooling capacity	kW	43.7	58.6	68.2	80.2	89.3	102.3	112.9	133.9	172.9	237.5
HR		1	1	1	1	1	1	1	1	1	1
ER		35.65	40.36	35.22	37.03	36.57	39.16	36.84	39.46	35.16	32.17
ersion B			Air	temperature	35°C - Relati	ve humidity	30% / Water	temperature	e In 15°C Out 2	23°C	
ooling capacity	kW	39.1	55	63.4	75.3	82.4	98.1	104.9	125.9	162.6	228.4
HR		1	1	1	1	1	1	1	1	1	1
ER		31.89	37.91	32.74	34.8	33.74	37.56	34.24	37.1	33.06	30.94
eometria C			Air	temperature	35°C - Relati	ve humidity	30% / Water	temperature	e In 15°C Out 2	27°C	
ooling capacity	kW	33.9	50.1	56.5	67.9	73.9	87.9	91	112.3	145.1	210.6
HR		1	1	1	1	1	1	1	1	1	1
ER		27.67	34.49	29.17	31.35	30.24	33.68	29.7	33.1	29.49	28.52
ated air flow	m³/h	10700	10700	14500	14500	18000	18000	24000	24000	18000	3100
otal fan absorbed power	kW	1.2	1.5	1.9	2.2	2.4	2.6	3.1	3.4	4.9	7.4
• @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	6	1	6	7	7	2	66	67	72	71
imensions Mod. "D" (Downflow)		4040		4076		4700		2000		2510	3160
WxHxD]	mm	1010x20	100x890	1270x20	00x890	1760x20	UUx890	2020x2	000x890	x2000 x890	x200 x960

Performance data relating to Downflow versions. | Also available with 60 Hz power supply. | Units also available in the models Upflow and Displacement, with the exception of size 240. | Height of model Displacement 2250 mm.

TRF CS is the range of chilled-water air conditioners for high power density computer rooms. The fans of the TRF CS units are positioned in separate housing (so-called FREE FAN solution), to increase the overall cooling capacity of the unit, but not to the detriment of the depth, which remains 890 mm. Great care has gone into every detail, in order to minimize air flow pressure drops and energy consumption of the fans, the only electrical load present in the machine.

FREE FAN solution

The FREE FAN solution with the fans mounted in separate housing frees up space inside the unit and thus increases the surface area of the coil. This results in both an increase in air flow and cooling capacity and a reduction in air pressure drops. The FREE FANsolution increases the refrigerating power of the entire range.

- and post-heating systems with electric heating elements
 - Humidifier installed on board the machine
 - thermal load (constant ΔT)
 - Hydraulic connections from the bottom
 - · Broad choice of accessories, including Free-Cooling
 - Air Filters G4, M5, F7 (on request)
 - switch (on request)
 - Double panelling only on the front doors

- Humidity control through dehumidification and humidification
- Fan speed modulation based on
- of the unit
- plenums for ducting, plenums for direct
- Air filter class G3 supplied as standard
- Double power supply with automatic
- or on the whole machine (on request)
- Instant reading of water flow rate, water inlet and outlet temperatures, or cooling capacity (on request)

Ventilation EC 2.0

the range, are adjustable using different logics: flow rate. overpressure, constant ΔP and ΔT . Their accurate adjustment allows an efficient use of power for ventilation and a consequent reduction of the system's PUE. Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows

for fan operation even in the event

of microprocessor malfunctions.

TRF CS

EER

Version A

Version A

Version B

Cooling capacity

Cooling capacity

Cooling capacity

EC PLUG fans, standard throughout

All units in the TRF CS range have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system or with

servo motor with spring return. Pressure-independent valves can also be fitted on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.

81.8 104.7

30.26

79.9

33.05

102.8

26.92

kW

Accurate regulation with

multiple types of valves logic in the server room, it is floating floor is used.

Double circuit

045 055 065 075 150 180 200 210

Air temperature 24°C - Relative humidity 50% / Water temperature In 7°C Out 12°C

Air temperature 30°C - Relative humidity 35% / Water temperature In 10°C Out 15°C

Air temperature 30°C - Relative humidity 35% / Water temperature In 10°C Out 18°C

84.8 110.2 131.2 172.3 200.6 -

165.3 200.5

37.19 38.29

0.78

189.4

0.8

157.2

131.2

0.78

29.21 31.38 35.17 35.68 38.28

35.19

121.4

Ventilation adjustment

Depending on the air distribution possible to adjust the machine onboard ventilation system to ensure a constant air flow rate (airflow control) or a constant available **overpressure** ($\triangle P$ control). The latter is particularly useful if a

Finned pack coil with hydrophilic coating

All models in the TRF CS range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection and outflow during the dehumidification process. preventing any dripping on the inside and outside of the unit.

Chilled water units are also available with a double circuit. In this version the supply is **via two** different hydraulic circuits that can offer the utmost operational continuity if one of the two circuits malfunctions. Each circuit is equipped with a regulating valve

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes routine maintenance easier in full compliance with safety standards.

Extended filter section

Air filters, located on the entire surface of the coil, maximize the filtering section and minimize the unit's air pressure drops.

25.81 28.53 30.82 32.56 33.93 36.15 29.64 **Version C** Air temperature 30°C - Relative humidity 35% / Water temperature In 10°C Out 22°C **Cooling capacity** 109.7 135.1 58.2 70.6 88.4 167.7 176.4 218.9 SHR FER 22.73 25.2 26.5 29.41 29.17 32 25.48 28.38 **Version A** Air temperature 35°C - Relative humidity 30% / Water temperature In 15°C Out 20°C Cooling capacity 84.9 110.8 130.2 173 199 SHR FER 28.49 30.3 33.21 34.91 37.35 37.98 Version B Air temperature 35°C - Relative humidity 30% / Water temperature In 15°C Out 23°C Cooling capacity 157.4 EER 28.47 30.87 32.49 33.98 36.05 29.69 31.35 Air temperature 35°C - Relative humidity 30% / Water temperature In 15°C Out 27°C **Version C** Cooling capacity 58.8 89.3 110.2 136.5 168.5 178.2 220 EER Rated air flow 15500 Total fan absorbed power kW 2.6 2.8 3.3 3.7 4.6 5.2 6.9 77 66 67 69 70 Lp @ Nominal rpm; dist.= 2 m Q=2 dB(A) Dimensions [WxHxD] 1270x2000x890 1760x2000x890 2510x2000x890 3160x2000x890 V/ph/Hz 400/3+N/50 Also available with 60 Hz power supply. | Minimum height with fanmodule 2550 mm.

CONFIGURATIONS

AIRFLOW

www.hiref.com

CHILLED WATER

TRF CF is the range of chilled-water air conditioners for computer rooms with very high power density. As for the TRF CS range, the fans are mounted in separate housing, but in addition units are **equipped with two chilled water batteries**. With these solutions the cooling capacity is maximized, at the same depth of 960 mm. In-depth fluid dynamic analysis has resulted in the meticulous design of every last constructive detail to minimise air pressure drops and fan power **consumption**, the only power load in the machine.

FREE FAN solution

The FREE FAN solution with the fans mounted in separate housing frees up space inside the unit and thus **increases** the surface area of the coil. This results in both an increase in air flow and cooling capacity and a reduction in air pressure drops. The FREE FAN solution increases the refrigerating power of the entire range.

AIRFLOW CONFIGURATIONS

- Temperature control through heating and post-heating systems with electric heating elements
- · Humidity control through dehumidification and humidification
- Humidifier installed on board the
- Fan speed modulation based on thermal load (constant ΔT)
- Hydraulic connections from the bottom of the unit
- Broad choice of accessories, including plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Double panelling only on the front doors or on the whole machine (on request)
- Instant reading of water flow rate, water inlet and outlet temperatures, or cooling capacity (on request)

Ventilation EC 2.0

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT Their accurate adjustment allows an **efficient use of power for** ventilation and a consequent reduction of the system's PUE. Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation even in the event

of microprocessor malfunctions.

TRF CF

Version A

SHR

EER

Cooling capacity

Accurate regulation with multiple types of valves

All units in the TRF CS range have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system or with servo motor with spring return. Pressure-independent valves can also be fitted on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.

Ventilation adjustment

floating floor.

Double circuit Chilled water units are also available with a double circuit. In

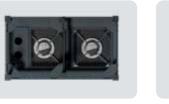
045 055 065 075 150 180 200 210

Air temperature 24°C - Relative humidity 50% / Water temperature In 7°C Out 12°C

33.56 38.75 26.02 30.55 24.78 - - -

191.2

0.74


154.5

0.78

0.73

234.5

0.78

The most suitable on-board

ventilation system can be chosen based on the air distribution logic in the server room, guaranteeing a constant flow of air (airflow control) or a constant available overlap (Δp control); the latter is particularly useful when using a

this version the supply is **via two** different hydraulic circuits that can offer the utmost operational

hydrophilic coating

All models in the TRF CF range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection and outflow during the dehumidification process, preventing any dripping on the inside and outside of the unit.

continuity if one of the two circuits malfunctions. Each circuit is equipped with a regulating valve

maintenance The unit has been painstakingly designed to ensure frontal access

Easier scheduled

to components. This makes routine maintenance easier in full compliance with safety standards.

Double coil

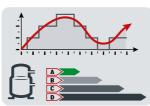
The double coil solution is designed to optimize the internal spaces of the unit, significantly increasing the heat exchange surface and potential refrigerating power.

Version A		Air temp	erature 30°	C - Relativ	e humidity (35% / Wat	er tempera	iture In 10°0	C Out 15°
Cooling capacity	kW	91.1	102.4	154	176.7	233.7	-	-	-
SHR		1	0.93	1	0.94	1	-	-	-
EER		32.94	35.68	25.93	28.23	24.7	-	-	-
Version B		Air temp	erature 30°	C - Relativ	e humidity	35% / Wat	er tempera	ture In 10°0	C Out 18°
Cooling capacity	kW	85.9	97.9	141.8	164.6	219.8	254.3	283.7	329.2
SHR		1	0.95	1	0.98	1	0.97	1	0.98
EER		31.06	34.14	23.88	26.31	23.23	25.54	22.07	24.28
Version C		Air tempe	erature 30°	C - Relative	humidity	35% / Wate	er tempera	ture In 10°C	Out 22°
Cooling capacity	kW	77.6	90.6	127.2	153.2	193	232.5	254.4	300.4
SHR		1	1	1	1	1	1	1	1
EER		28.06	31.59	21.41	24.49	20.4	23.35	19.79	22.16
Version A		Air tempe	erature 35°	C - Relative	humidity	30% / Wate	er tempera	ture In 15°C	Out 20°
Cooling capacity	kW	91.2	100.5	154.4	173.6	234.2	-	-	-
SHR		1	1	1	1	1	-	-	-
EER		32.99	35.03	25.99	27.75	24.75	-	-	-
Version B		Air tempe	erature 35°	C - Relative	humidity	30% / Wate	er tempera	ture In 15°C	Out 23°
Cooling capacity	kW	85.7	96.6	141.7	163.9	219.5	253.2	283.4	327.9
SHR		1	1	1	1	1	1	1	1
EER		30.99	33.68	23.85	26.2	23.2	25.43	22.05	24.18
Version C		Air tempe	erature 35°	C - Relativ	humidity :	30% / Wate	er tempera	ture In 15°(Out 27°
Cooling capacity	kW	78	89.9	128	153.6	194.2	233	256	301.2
SHR		1	1	1	1	1	1	1	1
EER		28.19	31.35	21.55	24.54	20.53	23.41	19.92	22.22
Rated air flow	m³/h	16500	16500	29000	29000	44000	44000	58000	58000
Total fan absorbed power	kW	2.8	2.9	5.9	6.3	9.5	10	12.9	13.6
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)		70		1	7	-	74	75
Dimensions [WxHxD]	mm	1270x2	000x960	1760x20	00x960	2510x20	100x960	3160x20	100x960
Power supply	V/ph/Hz				400/3	i+N/50			

www.hiref.com

CHILLED WATER

NRG series perimeter-mounted air conditioning units are designed for **high thermal density** IT facilities requiring **accurate hygrothermal parameter control and continuous operation**. The use of inverter-driven compressors, capable of tracking the thermal load with extreme precision, of EC fans (standard), and of electronically controlled lamination valves (standard) also **make it possible to achieve high performance with reduced energy consumption, improving the Data Centre's PUE.** The strength of the new NRG range is **the high efficiency** (KW/sq.m), obtained thanks to the precise internal design, a frame of just 890 mm in depth, and the careful choice of components.


Versatile and flexible range

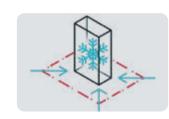
The following refrigerating configuration options are available:

- NRG A Air condensing with remote condenser.
- NRG W Dry Cooler or water condensing.
- NRG Z Mains water condensing (15°C).
- NRG F Water condensing and indirect water Free-Cooling.
- NRG D Air condensing with remote condenser and Dual Cooling.
- NRG K Dry-Cooler or water condensing and Dual Cooling.
- NRG **Q** Mains water condensing (15°C) and Dual Cooling.

The NRG A units are air-condensed perimeter-mounted units of the NRG range; they are widely used for the cooling of Data Centers. The air-condensed solution offers a **simple system design**, thanks to the absence of auxiliary circuits and pumps; **the cooling circuit is managed by the cabinet**, and both the indoor unit and the remote condenser are **easy to install**.

- Refrigerant R410A
- EC Fans
- Scroll inverter compressors
- Electronic expansion valves
- Advanced programmable microprocessor control with LCD display
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas
- Humidity control through dehumidification and humidification
- Broad choice of accessories including basic modules, plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Constant flow (airflow control) or constant available overpressure (△P control) ventilation modulation (on request)
- Long distance kits for optimal operation in the case of large distances between indoor and outdoor units (on request)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)

Power modulation


The NRG A units adapt quickly to Data Center cooling requests.

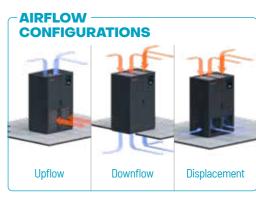
Thanks to the inverter-controlled compressor, performance can be modulated to **up to 25%** of the rated value, **thus reducing consumption**. This ensures **continuous operation of the unit** even at low loads, without switching cycles on and off.

Aiming at maximised system efficiency

Design choices include, in addition to the use of electronically controlled expansion valves, the management of variable-speed Scroll compressors and EC (electronically commutated) fans via Modbus. Thanks to these features it is possible to acquire, manage and adjust operating parameters and therefore thermo-hygrometric values in the server room very accurately, with high levels of energy efficiency.

Maximised power density The internal design and the special

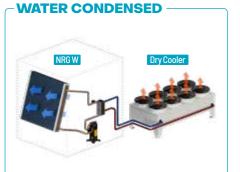
arrangement of the components of the TRF Evolution platform, used in the NRG units, have been designed to maximise the exchange surface of the evaporating coil. These characteristics, combined with the use of latest-generation electronic switching EC fans with high air flow rate, have allowed the power density to be increased. The space available in the server room is made the most of and this makes the NRG A units suitable for applications with **high thermal** load density, typical of latest generation Data Centres.



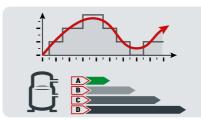
Remote condensers

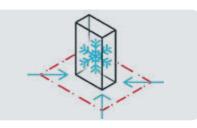
All units can be combined with HiRef remote condensers, **choosing** from different combinations to meet all system needs. Oversize remote condensers are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while the compact condensers on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single cooling circuit for maximum reliability and redundancy of the system or with a double cooling circuit, to reduce installation spaces and costs.

NRG A		0091	0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962	1003	1103
					Air tem	perature	24°C -	Relative	humidi	ty 50 % /	Outdoo	or Air Te	mperati	ıre 35°C			
Cooling capacity	kW	9.3	12.3	19.8	23.8	31.3	38.1	44	47.7	56.8	58.2	73.8	77.3	81.4	93.3	109.2	127
SHR		0.89	0.94	1	1	1	0.99	0.93	0.99	0.91	0.99	0.93	0.99	1	0.94	0.87	0.81
EER		3.74	3.71	4	3.99	4.19	3.9	3.46	3.89	3.78	3.85	3.72	3.83	4.21	4.1	4.06	3.61
Total absorbed power	kW	2.7	3.7	6.2	7.2	9.3	11.6	14.5	14.5	17.2	18	23.8	25.1	25.2	28.6	32.8	41.1
					Air tem	perature	30°C -	Relative	humidi	ty 35% <i>i</i>	Outdoo	or air Te	mperati	ıre 35°C			
Cooling capacity	kW	10	13.9	22.5	27	35.5	43.2	48.7	53.7	62.9	65.6	81.9	87.3	92	104.1	119	135.7
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.97
EER		3.94	4.09	4.44	4.42	4.67	4.32	3.67	4.2	4.11	4.23	3.98	4.16	4.65	4.45	4.37	3.79
Total absorbed power	kW	2.7	3.8	6.3	7.4	9.4	11.8	15.1	15	17.5	18.4	24.5	25.9	25.6	29.3	33.1	41.7
					Air tem	perature	e 35°C -	Relative	humidi	ty 30% /	/ Outdoo	or Air te	mperati	ıre 35°C			
Cooling capacity	kW	10.8	15.2	25	29.9	39.2	47.5	53.4	59	68.9	72.3	90	96.1	101.2	114.3	130.1	147.2
																	- 1
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
		1 4.18	1 4.35	1 4.86	1 4.81	1 5.08	1 4.66	1 3.9	1 4.48	1 4.43	1 4.59	1 4.25	1 4.45	5.02	1 4.81	1 4.69	4.04
EER	kW	1 4.18 2.8	-	1 4.86 6.4	1 4.81 7.4	1 5.08 9.5	1 4.66 12		1 4.48 15.4		1 4.59 18.6	1 4.25 25.1		5.02 26	1 4.81 29.6	1 4.69 33.6	4.04 42.3
EER Total absorbed power	kW m³/h		4.35					3.9		4.43			4.45				42.3
EER Total absorbed power Rated air flow		2.8	4.35	6.4	7.4	9.5	12	3.9 15.5	15.4	4.43 17.8	18.6	25.1	4.45 26.5	26	29.6	33.6	42.3
EER Total absorbed power Rated air flow Number of circuits		2.8	4.35 3.9 3700	6.4	7.4	9.5	12	3.9 15.5	15.4	4.43 17.8	18.6	25.1	4.45 26.5	26 25300	29.6 25300	33.6 25300	42.3 25300
EER Total absorbed power Rated air flow Number of circuits Number of inverter compressors		2.8	4.35 3.9 3700	6.4	7.4	9.5	12	3.9 15.5	15.4	4.43 17.8	18.6	25.1	4.45 26.5	26 25300	29.6 25300	33.6 25300	42.3 25300
EER Total absorbed power Rated air flow Number of circuits Number of inverter compressors Number of on/off compressors		2.8	4.35 3.9 3700	6.4 8800 1 1	7.4	9.5	12 11720 1 1	3.9 15.5	15.4	4.43 17.8	18.6 17500 1 1	25.1	4.45 26.5 23700 1	26 25300	29.6 25300	33.6 25300 2 1	42.3 25300 2 1 2
SHR EER Total absorbed power Rated air flow Number of circuits Number of inverter compressors Number of on/off compressors Lp @ Nominal rpm; dist.= 2 m 0=2 Dimensions [WxHxD]	m³/h	2.8 2150 1	4.35 3.9 3700 1	6.4 8800 1 1	7.4 8800 1 1	9.5 11720 1 1 71	12 11720 1 1	3.9 15.5 11720 1 1	15.4 14300 1 1	4.43 17.8 14300 1 1 1	18.6 17500 1 1 7	25.1 19900 1 1	4.45 26.5 23700 1	26 25300 2 1 1	29.6 25300	33.6 25300 2 1 2	42.3 25300 2 1 2


Performance data relating to Downflow versions combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm for sizes 0091-0131.

The NRG W units are water-condensed perimeter cabinets. The W series uses Dry Cooler water, the Z series on the other hand uses low temperature mains water or groundwater (15°C). The NRG units of these series are monobloc units inside which the **entire cooling circuit is concentrated**, cooling is via a **brazed plate exchanger made from stainless steel AISI 304.**


The NRG Z units are water-condensed perimeter cabinets. The W series uses Dry Cooler water, the Z series on the other hand uses low temperature mains water or groundwater (15°C). The NRG units of these series are monobloc units inside which the entire cooling circuit is concentrated, cooling is via a brazed plate exchanger made from stainless steel AISI 304.


- Refrigerant R410A
- EC Fans
- Scroll inverter compressors
- Electronic expansion valves
- Advanced programmable microprocessor control with LCD display
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas
- Humidity control through dehumidification and humidification
- Broad choice of accessories including basic modules, plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Constant flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (on request)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)

Power modulation

The NRG W units adapt quickly to Data Center cooling requests. Thanks to the inverter-controlled compressor, performance can be modulated to **up to 25%** of the rated value, **thus reducing consumption**. This ensures **continuous operation of the unit even at low loads**, without switching cycles on and off.

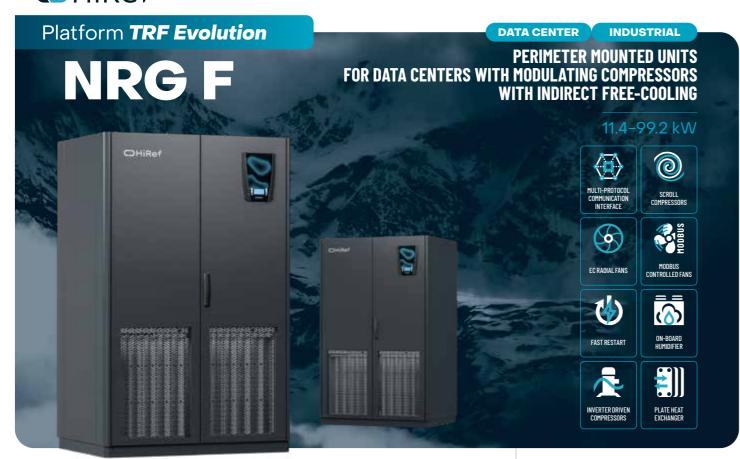
Maximised power density

The internal design and the special arrangement of the components of the TRF Evolution platform, used in the NRG units, have been designed **to maximise the exchange surface of the evaporating coil.**These characteristics, combined with the use of latest-generation electronic switching EC fans with high air flow rate, have allowed the **power density to be increased.** The space available in the server room is made the most of and this makes the NRG W units suitable for applications with **high thermal load density, typical of latest generation Data Centres.**

Aiming at maximised system efficiency

Design choices include, in addition to the use of electronically controlled expansion valves, the management of variable-speed Scroll compressors and EC (electronically commutated) fans via Modbus. Thanks to these features it is possible to acquire, manage and adjust operating parameters and therefore thermo-hygrometric values in the server room very accurately, with high levels of energy efficiency.

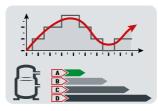
NRG W		0091	0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
					Air te	mperatu	re 24°C - I	Relative h	numidity 5	50% / Wa	ter 40°C -	- 45°C			
Cooling capacity	kW	8.8	11.9	20.4	24.5	32.1	37.1	44.1	46.3	54.3	56.3	71.3	74.8	82.8	90.1
SHR		0.85	0.95	1	1	1	0.98	0.91	0.98	0.91	0.98	0.93	0.99	0.99	0.93
EER		3.15	3.37	4.43	4.38	4.58	3.97	3.77	3.94	3.64	3.82	3.66	3.83	4.47	4.06
Total absorbed power	kW	3	3.9	5.8	6.8	8.8	11.1	13.5	14	17.1	17.6	23.4	24.5	24.4	28.1
					Air te	mperatur	re 30°C - I	Relative I	numidity 3	35% / Wa	ter 40°C ·	- 45°C			
Cooling capacity	kW	9.5	13.5	23.6	28.2	36.9	42.4	49.3	52.9	60.5	64.1	79.8	85.6	95	101.5
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.34	3.77	5.26	5.14	5.35	4.56	4.2	4.47	4.05	4.35	4.05	4.32	5.18	4.58
Total absorbed power	kW	3	4	5.7	6.7	8.7	11.1	13.5	14.1	17.2	17.6	23.6	24.7	24.2	28.1
					Air te	mperatur	e 35°C - I	Relative h	numidity 3	30% / Wa	ter 40°C ·	- 45°C			
Cooling capacity	kW	10.3	14.8	26.4	31.3	41.3	47.1	54.6	58.8	67	71.2	88.1	94.8	105.4	112.1
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.57	4.11	6.07	5.84	6.16	5.12	4.63	4.95	4.5	4.86	4.43	4.74	5.82	5.07
Total absorbed power	kW	3.1	4	5.6	6.6	8.5	11	13.6	14.1	17.1	17.5	23.8	25	24	28
Rated air flow	m³/h	2150	3700	8800	8800	11720	11720	11720	14300	14300	17500	19900	23700	25300	25300
Number of circuits		1	1	1	1	1	1	1	1	1	1	1	1	2	2
Number of inverter compressors		1	1	1	1	1	1	1	1	1	1	1	1	1	1
Number of on/off compressors	ID(A)		F/	7	0	71		7/	75		17		_		I
.p @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	50 600	54 900	/	0	71		74	75	1	17		/	6	
Dimensions [WxHxD]	mm	x1875 x600	x1875 x600	1010×20	00x890	12	70x2000x8	390	1760×20	000 x 890	2020×20	000 x 890	25	10x2000x8	390
Power supply	V/ph/Hz		000					400/3	+N/50						
NRG Z		0091	0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
								Deletion				7000			
Cooling capacity	LW	0.7	17.0	22.8	27.1	emperatu 35.7	41.7	49.9	52.6	61.2			0/7	07 /	102.7
SHR	kW	9.7 0.85	13.6 0.89	1	1	1	0.93	0.85	0.93	0.86	62.9 0.93	79.7 0.87	84.3 0.94	93.4 0.94	0.87
EER		4.51	5.46	7.2	6.9	7.3	6.12	5.72	6.04	5.43	5.71	5.36	5.64	7.13	6.39
Total absorbed power	kW	2.3	2.9	4.4	5.2	6.7	8.6	10.5	10.9	13.5	13.9	18.8	19.9	19	21.9
					Atua		70°C	Deletion		7F9/ / W-	1E°0	70°C			
						emperatu				35% / Wa					
Cooling capacity	kW	10.3	14.9	26	31	40.8	46.6	54.2	58.9	66.9	70.7	88	94.9	105.1	112.4
SHR Eer		4.8	6.04	8.89	8.38	8.92	7.03	6.24	6.84	5.99	6.52	5.87	6.29	8.34	7.1
Total absorbed power	kW	2.3	2.8	4.2	4.9	6.4	8.4	10.5	10.8	13.4	13.7	18.9	20	18.5	21.7
iotai absorbea porrei	I.W	2.0	2.0	7.2									20	10.5	21.7
						emperatu				30% / Wa					
Cooling capacity	kW	11.1	16.5	28.7	34.1	44.9	51.6	59.9	65	73.5	78.2	96.6	104.2	115.6	124
SHR Eer		5.14	6.74	10.68	9.85	10.53	8.06	6.98	7.7	6.69	7.39	6.4	6.88	9.64	8.03
Total absorbed power	kW	2.3	2.8	3.9	4.7	6.1	8.2	10.4	10.7	13.2	13.5	19	20.1	17.9	21.3
· ·															
Rated air flow Number of circuits	m³/h	2150	3700	8800	8800	11720	11720	11720	14300	14300	17500	19900	23700	25300	25300
Number of circuits Number of inverter compressors		1	1	1	1	1	1	1	1	1	1	1	1	1	1
Number of inverter compressors Number of on/off compressors		1	1		1	1	1			1	1	ı	I	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	50	54	7	0	71	-	74	75	7	17		7	'6	
		600	900	·											
Dimensions [WxHxD]	mm	x1875 x600	x1875 x600	1010x20	100x890	12	70x2000x8	890	1760x20	000x890	2020x20	000x890	25	10x2000x8	390
Power supply	V/ph/Hz	A000	A000					400/3	S+N/50						
Performance data relating to Downf		o I Alco ove	nilahla wi+	s 60 Uz no	or cupple	Model heli	aht Dianlas			700 NN01 N	171				
ceconomanice nara refailmo in HOWDT	mw versinn	5. LAISH AVA	manne will	LOUID/IIIIW	er Sullilli	connernel	um memar	FILLERIN / 1/	12 HH HHH C	7 PS HH191-1					

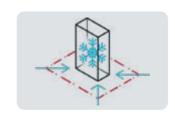

Performance data relating to Downflow versions. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm for sizes 0091-0131.

www.hiref.com

MAINS WATER

CONDENSED


NRG F units are water-condensed perimeter-mounted cabinets that are able to exploit the **effect of indirect** water-based Free-Cooling. The F Series uses Dry Cooler water as both a cooling source for free-cooling and a heat exchange fluid for condensing the cooling circuit. NRG F units are "monobloc" units inside which the entire cooling circuit is concentrated. Cooling is via a brazed plate exchanger made of stainless steel AISI 304.

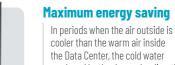


- Refrigerant R410A
- EC Fans
- Scroll inverter compressors
- Electronic expansion valves
- Advanced programmable microprocessor control with LCD display
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas
- Humidity control through dehumidification and humidification
- Broad choice of accessories including basic modules, plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Constant flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (on request)

Power modulation

NRG F units adapt quickly to Data Center cooling requests. Thanks to the inverter-controlled compressor, performance can be modulated to **up to 25%** of the rated value, thus reducing consumption. This ensures **continuous operation of the unit even at low loads,** without switching cycles on and off.

Maximised power density


The internal design and the special arrangement of the components of the TRF Evolution platform, used in the NRG units, have been designed to maximise the exchange surface of the evaporating coil. These characteristics, combined with the use of latest-generation electronic switching EC fans with high air flow rate, have allowed the power density to be increased.

high air flow rate, have allowed the **power density to be increased.**The space available in the server room is made the most of and this makes the NRG F units suitable for applications with **high thermal load density**, typical of latest generation Data Centers.

Aiming at maximised system efficiency

Design choices include, in addition to the use of electronically controlled expansion valves, the management of variable-speed Scroll compressors and EC (electronically commutated) fans via Modbus. Thanks to these features it is possible to acquire, manage and adjust operating parameters and therefore thermo-hygrometric values in the server room very accurately, with high levels of energy efficiency.

cooler than the warm air inside the Data Center, the cold water produced by the dry cooler directly feeds the heat exchange coil, which is able to provide a part or all of the required cooling capacity. Before returning to the dry cooler, the water is reused inside the plate exchanger, serving the compressor. The entire process is regulated by a 3-way valve directly controlled by HiRef software, which maximizes the Free-Cooling effect and checks the cooling circuit. In this way the work of the compressor is significantly reduced, and shuts down when a state of Free-Cooling

is fully reached, with a significant

reduction in the system's PUE.

NRG F		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
			Air temp	erature 2	4°C - Rela	tive humic	lity 50% /	Water 40	°C - 45°C	/ Free-Co	oling wate	r 7°C / Gly	/col 30%	
Cooling capacity	kW	11.4	19.3	22.9	29.3	33.7	39.9	43.7	51	51.8	64.2	69.7	76.2	82.7
SHR		0.92	1	0.99	1	0.92	0.85	0.95	0.88	0.94	0.84	0.95	0.93	0.87
EER		3.18	4.14	4.05	4.12	3.57	3.41	3.7	3.4	3.5	3.31	3.56	4.08	3.71
Free-Cooling capacity	kW	8.8	22.5	24.6	33.3	37.8	40.8	48	52	56.4	65.8	80.4	80.4	86.8
SHR Free-Cooling		0.93	1	0.9	0.9	0.84	0.81	0.87	0.83	0.87	0.8	0.85	0.85	0.81
Total absorbed power	kW	4	5.8	6.8	8.7	11	13.3	14.1	17.3	17.5	22.1	24.2	23.3	27
			Air temp	erature 3	D°C - Rela	tive humid	lity 35% /	Water 40°	°C - 47°C /	Free-Coo	ling water	12°C / GI	ycol 30%	
Cooling capacity	kW	12.5	21.9	25.7	32.9	37.3	43.1	48.7	55.5	57.8	68.9	77.7	84.2	89.5
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.36	4.6	4.44	4.51	3.85	3.56	3.97	3.59	3.79	3.43	3.82	4.36	3.87
Free-Cooling capacity	kW	8.5	22.6	24	31.5	34.4	35.3	45.5	48	53.4	57.9	73.2	75.2	77.3
SHR Free-Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	4.2	5.9	6.9	8.9	11.3	13.7	14.5	17.7	18	22.8	25	24	27.8
			Air temp	erature 3	5°C - Rela	tive humid	lity 30% /	Water 40°	°C - 47°C /	Free-Coo	ling water	17°C / GI	ycol 30%	
Cooling capacity	kW	13.9	24.3	28.6	36.6	41.6	47.6	54	61.2	63.6	75.9	85.4	93.2	99.2
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.69	5.21	5.01	5.08	4.3	3.9	4.38	3.95	4.17	3.73	4.15	4.86	4.28
Free-Cooling capacity	kW	9	23.5	24.9	33.6	35.5	36.6	48.2	49.7	56.6	58.4	77.5	77.5	80
SHR Free-Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	4.2	5.8	6.8	8.8	11.3	13.8	14.6	17.7	18	23	25.2	23.8	27.8
Rated air flow	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Number of circuits		1	1	1	1	1	1	1	1	1	1	1	2	2
Number of inverter compressors		1	1	1	1	1	1	1	1	1	1	1	1	1
Number of on/off compressors													1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	54		70		7	4	75	7	7	75	76	7	5
Dimensions [WxHxD]	mm	900 x1875 x600	1010×20	00x890	12	70x2000x8	90	1760×20	100x890	2020x2	000x890	25	510x2000x8	90
Power supply	V/ph/Hz	200						400/3+N/50)					

 $Performance\ data\ relating\ to\ Downflow\ versions.\ |\ Also\ available\ with\ 60\ Hz\ power\ supply.\ |\ Model\ height\ Displacement\ 2125\ mm\ for\ size\ 0131.$

Maximum flexibility

discretion.

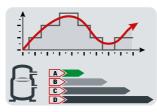
The Dual Cooling units combine the

reliability of a dual source with

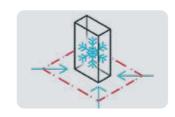
the ease of operation of HiRef

cabinets. The on-board control allows you to select the source according to different logics, at your

NRG D units are Dual Cooling units. They combine the traditional evaporative coil of the cooling circuit with the cooling effect of chilled water, coming from an outdoor unit such as a chiller. The use of a dual source quarantees the **continuity of supply to the** system and the best operational solution in all cases.


Remote condensers

All NRG D units can be combined with HiRef remote condensers, choosing from different combinations to meet all system needs. Oversize remote condensers are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while the compact condensers on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single cooling circuit for maximum reliability and redundancy of the system or with a double cooling circuit, to reduce installation spaces and costs.



- 💶 Only Mod. Q and K
- Refrigerant R410A
- EC Fans
- Scroll inverter compressors
- Electronic expansion valves
- Advanced programmable microprocessor control with LCD display
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot
- Humidity control through dehumidification and humidification
- · Broad choice of accessories including basic modules, plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Constant flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (on request)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Long distance kits for optimal operation in the case of large distances between indoor and outdoor units (on request)

Power modulation

The NRG D units adapt quickly to Data Center cooling requests. Thanks to the inverter-controlled compressor, performance can be modulated to upto 25% of the rated value, thus reducing consumption. This ensures **continuous operation** of the unit even at low loads, without switching cycles on and off.

Maximised power density

The internal design and the special arrangement of the components of the TRF Evolution platform, used in the NRG units, have been designed to maximise the exchange surface of the evaporating coil. These characteristics, combined with the use of latest-generation electronic switching EC fans with high air flow rate, have allowed the power density to be increased.

The space available in the server room is made the most of and this makes the NRG D/K/O units suitable for applications with **high thermal load density,** typical of latest generation Data Centres.

Aiming at maximised

to the use of electronically controlled expansion valves, the management of variable-speed Scroll compressors and EC (electronically commutated) fans via Modbus. Thanks to these features it is possible to acquire, manage and adjust operating parameters and therefore thermo-hygrometric values in the server room very accurately, with high levels of energy efficiency.

system efficiency

Design choices include, in addition

THOU THAT										ni lime				
NRG D		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
		Air	temperat	ure 24°C -	Relative	humidity !	50% / Outo	door Air Te	mperatur	e 35°C / W	later temp	erature li	n 7°C Out 1	2°C
Cooling capacity	kW	11.7	18.8	22.4	28.8	33.4	38.5	43	51.3	51.6	64	69	73.6	82.8
SHR		0.9	1	1	1	0.93	0.87	0.96	0.88	0.94	0.84	0.95	0.94	0.87
EER		3.57	3.81	3.77	3.91	3.47	3.1	3.55	3.44	3.46	3.3	3.48	3.72	3.72
Chilled water cooling capacity	kW	8.2	29.1	29.1	40.8	40.8	40.8	56	56	65.8	65.8	90	90	90
Chilled Water SHR		1	0.82	0.82	0.81	0.81	0.81	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Total absorbed power	kW	3.7	6.1	7.1	8.9	11.2	14	14.4	17.2	17.6	22.1	24.5	24.5	26.9
		Air	temperat	ure 30°C -	Relative	humidity 3	35% / Outc	loor air Te	mperatur	e 35°C/ W	ater temp	erature In	10°C Out 1	5°C
Cooling capacity	kW	13	21.4	25.3	32.5	37.2	42	48.4	56.2	57.7	69.7	77.5	82.3	90.1
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3.89	4.26	4.19	4.33	3.77	3.31	3.87	3.72	3.79	3.51	3.8	4.05	3.96
Chilled water cooling capacity	kW	10.5	31.4	31.4	42.3	42.3	42.3	57.5	57.5	67.5	67.5	92.5	92.5	92.5
Chilled Water SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	3.8	6.1	7.2	9.1	11.4	14.3	14.8	17.4	17.9	22.5	25.1	25	27.4
		Air	temperat	ure 35°C -	Relative	humidity 3	30% / Outo	loor air te	mperature	35°C/ Wa	ater tempo	erature In	15°C Out 2	0°C
Cooling capacity	kW	14.4	23.5	27.9	36	41	46.1	52.9	61.4	63.3	75.7	85	90.4	98.9
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4.2	4.63	4.56	4.73	4.1	3.51	4.1	3.99	4.09	3.71	4.04	4.33	4.25
Chilled water cooling capacity	kW	10.7	31.6	31.6	42.7	42.7	42.7	57.9	57.9	68	68	93.1	93.1	93.1
Chilled Water SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	3.9	6.2	7.3	9.2	11.6	14.7	15.2	17.7	18.2	23.1	25.7	25.5	27.9
Rated air flow	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Number of circuits		1	1	1	1	1	1	1	1	1	1	1	2	2
Number of inverter compressors		1	1	1	1	1	1	1	1	1	1	1	1	1
Number of on/off compressors													1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	54		70			74	75	7	7	75	76	7	5
Dimensions [WxHxD]	mm	900 x1875 x600	1010×20	000×890	12	270×2000×8	390	1760×20	000x890	2020x2	000 x 890	25	510 x 2000 x 8	90
Power supply	V/ph/Hz							400/3+N/5	0					

Performance data relating to Downflow versions combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm for size 0131.

Platform TRF Evolution

NRG D/K/Q



Performance data relating to Downflow versions. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm for size 0131.

NRG Q		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
			Air ten	perature	24°C - Rel	ative hum	idity 50%	/ Water 1	5°C - 30°C	/ Water to	emperatu	re In 7°C O	ut 12°C	
Cooling capacity	kW	12.9	21.4	25.6	32.4	37.9	45.3	49.6	57.6	57.8	71.5	77.8	86.2	94.3
SHR		0.86	1	0.94	0.97	0.87	0.81	0.89	0.83	0.89	0.8	0.89	0.87	0.82
EER		5.15	6.59	6.36	6.41	5.49	5.19	5.69	5.09	5.21	4.84	5.24	6.46	5.82
Chilled water cooling capacity	kW	8.2	29.1	29.1	40.8	40.8	40.8	56	56	65.8	65.8	90	90	90
Chilled Water SHR		1	0.82	0.82	0.81	0.81	0.81	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Total absorbed power	kW	2.9	4.4	5.1	6.6	8.5	10.3	11	13.6	13.8	17.5	19.5	18	20.9
			Air tem	perature	30°C - Rel	ative hum	idity 35%	/ Water 19	s°C - 30°C	/ Water te	mperatur	e In 10°C O	ut 15°C	
Cooling capacity	kW	13.9	24.5	28.7	36.7	41.7	48.2	54.9	61.8	64.3	76.6	86.5	94.1	101.1
SHR		1	1	1	1	1	0.97	1	0.99	1	0.96	1	1	0.98
EER		5.62	8.04	7.48	7.58	6.12	5.52	6.33	5.49	5.84	5.17	5.78	7.19	6.29
Chilled water cooling capacity	kW	10.5	31.4	31.4	42.3	42.3	42.3	57.5	57.5	67.5	67.5	92.5	92.5	92.5
Chilled Water SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	2.9	4.2	5	6.4	8.4	10.3	10.9	13.5	13.7	17.5	19.6	17.7	20.7
			Air tem	perature	35°C - Rela	ative humi	idity 30%	/ Water 15	°C - 30°C	/ Water te	mperatur	e In 15°C O	ut 20°C	
Cooling capacity	kW	15.4	26.9	31.7	40.5	45.7	52.7	60.2	67.7	70.7	83.4	94.9	103.8	110.3
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		6.27	9.47	8.7	8.81	6.85	6.06	7.02	6.08	6.52	5.58	6.29	8.21	6.95
Chilled water cooling capacity	kW	10.7	31.6	31.6	42.7	42.7	42.7	57.9	57.9	68	68	93.1	93.1	93.1
Chilled Water SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	2.9	4	4.8	6.2	8.3	10.3	10.9	13.4	13.5	17.7	19.7	17.3	20.5
Rated air flow	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Number of circuits		1	1	1	1	1	1	1	1	1	1	1	2	2
Number of inverter compressors		1	1	1	1	1	1	1	1	1	1	1	1	1
Number of on/off compressors													1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	54		70		7	4	75	7	7	75	76	7	5
Dimensions [WxHxD]	mm	900 x1875 x600	1010×20	100x890	12	70×2000×8	90	1760×20	000x890	2020×20	000×890	25	10×2000×8	90
Power supply	V/ph/Hz							400/3+N/5	0					

Performance data relating to Downflow versions. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm for size 0131.

The TREF DX series perimeter mounted units are direct expansion units with Scroll on-off compressors designed to be installed in medium/large-sized premises such as server rooms and labs or for applications where accurate control of thermo-hygrometric parameters and round-the-clock operation are required. The top priority for internal design and for the choice of components is energy efficiency - to optimise the system overall electricity consumption with a positive impact on the Data Center Power Usage Effectiveness (PUE).

Versatile and flexible range

Thanks to different refrigerating configurations available, the TREF DX range is suitable for a number of applications in the field of Data Center air conditioning.

Air condensing with remote condenser.

TREF W

Dry Cooler or Evaporative tower water condensing.

Mains water condensing (15°C).

Water condensing and indirect water Free-Cooling.

TREF D

Air condensing with remote condenser and Dual Cooling.

TREF K

Dry-Cooler or Evaporative tower water condensing and Dual Cooling.

Mains water condensing (15°C) and Dual Cooling.

TREF DX A units are air-condensed perimeter-mounted units in the TREF range; they are widely used for the cooling of Data Centers. The air-condensed solution offers a **simple system design**, thanks to the absence of auxiliary circuits and pumps; **the cooling circuit is managed by the cabinet**, and both the indoor unit and the remote condenser are **easy to install**.

- Refrigerante R410A. Disponibile anche in R513A e R134a
- Ventilatori EC
- Compressori Scroll on/off
- Controllo della temperatura tramite sistemi di riscaldamento e post riscaldamento con resistenze elettriche, acqua calda e gas caldo
- Controllo dell'umidità tramite deumidifica e umidifica
- Ampia scelta di accessori tra cui moduli di base, plenum per canalizzazione, plenum per Free-Cooling diretto
- Filtri aria classe G3 di standard. Filtri aria G4, M5, F7 (su richiesta)
- Doppia alimentazione elettrica con switch automatico (su richiesta)
- Modulazione della ventilazione a portata costante (airflow control) o a sovrappressione disponibile costante (ΔP control)(su richiesta)
- Valvole di espansione elettronica
- Kit lunghe distanze per un funzionamento ottimale nel caso di grandi distanze tra unità interna ed esterna (su richiesta)
- Kit basse temperature per un funzionamento ottimale nel caso di installazione in ambienti particolarmente freddi (su richiesta)

Safety in the server room

All models in the TREF DX A range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

Green

HiRef is constantly committed to the search for refrigerants that have an increasingly reduced environmental impact. The use of ASHRAE Class Al refrigerants, non-toxic and non-flammable, is essential for the "close control" application. All TREF DX A units are available with R134a and R513A refrigerants.

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes routine maintenance easier in full compliance with safety standards.

Dual circuit

Double-circuit versions are already available at low power levels.
This solution offers maximum unit redundancy and ensures continuity of service, more precise refrigerating power and less absorption for partial Data Center loads.

Remote condensers

All units can be combined with HiRef remote condensers, choosing from different combinations to meet all system needs. Oversize remote condensers are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while the compact condensers on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single cooling circuit for **maximum** reliability and redundancy of the system or with a double cooling circuit, to reduce installation spaces and costs.

TREF DX A		0201	0251	0281	0311	0401	0272	0302	0362	0422	0452	0532	0592	0602	0692	0762	0852	1002	1204
					Air	temper	rature 2	4°C - R	elative	humidi	ty 50%	/ Outdo	oor Air	Temper	ature 3	5°C			
Cooling capacity	kW	22.8	26.1	30.2	34.1	41.4	27.4	35.8	39.1	44.1	49	58.3	63.8	65	75.6	83.1	89.6	98.7	126.6
SHR		0.99	0.95	0.92	0.86	0.97	1	1	0.98	0.95	0.91	0.9	0.85	0.9	0.89	0.86	0.92	0.87	0.81
EER		3.82	4.26	4.03	4.31	3.91	4.48	4.37	3.89	3.77	3.76	3.97	3.75	3.77	4	3.73	4.21	3.97	3.66
Total absorbed power	kW	7.1	7.2	8.8	9.2	12.5	8.1	10.2	12	13.7	15	17.3	19.6	20.3	22	25.4	24.6	28.2	37.3
					Air	temper	rature 3	0°C - R	elative	humidi	ity 35 %	/ Outd	oor air i	Temper	ature 3	5°C			
Cooling capacity	kW	25.6	28.7	33	36.4	45.5	30.1	41	44.5	48.6	52.8	62.3	67.5	70.9	81.4	88.3	97.7	106.8	134.7
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.99
EER		4.12	4.64	4.32	4.55	4.22	4.88	4.84	4.3	4.05	3.98	4.18	3.92	4.03	4.21	3.93	4.54	4.18	3.87
Total absorbed power	kW	7.3	7.3	8.9	9.3	12.7	8.1	10.4	12.3	14	15.2	17.5	19.8	20.7	22.4	25.6	24.9	28.9	37.5
Rated air flow	m³/h	6800	6800	12950	7280	12950	7280	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	24000
Number of circuits		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2
Number of compressors		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	4
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	55	56	59	58	61	58	62	63	6	35	6	7		68		7	6	80
Dimensions [WxHxD]	mm	x21	110 100 105	1760 x2000 x805	1270 x2000 x805	1760 x2000 x805	1270 x2000 x805		1760×20	000 x 805		2020×20	000 × 805	251	0x2000x	805	2510×20	00×950	3160 x2000 x950
Power supply	V/ph/Hz									400/3	4N/50								

Performance data relating to Downflow versions with R410A refrigerant combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Height of model Displacement 2250 mm.

TREF DX W/Z

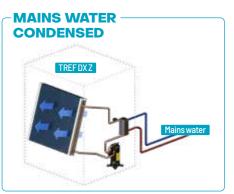
WATER CONDENSED PERIMETER MOUNTED UNITS

DATA CENTER INDUSTRIAL

FOR DATA CENTERS

TREF DX W > 27.3-153.1 kW

TREF DX Z > 23.4-137.9 kW


TREF DX W units are water-condensed perimetermounted cabinets, and they use Dry Cooler water. The TREF units of this series are "monobloc" units inside which the entire cooling circuit is concentrated. Cooling is via a **brazed plate exchanger made of** stainless steel AISI 304.

OHIRef

TREF DX Z units are water-condensed perimetermounted cabinets, and they use low temperature mains water or groundwater (15°C). The TREF units of this series are "monobloc" units inside which **the** entire cooling circuit is concentrated. Cooling is via a brazed plate exchanger made of stainless steel AISI 304.

Easier scheduled maintenance

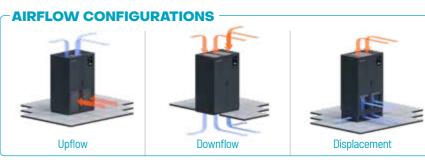
The unit has been painstakingly designed to ensure frontal access to components even with the units running. This makes routine maintenance easier in full compliance with safety standards.

- Refrigerante R410A. Disponibile anche in R513A e R134a
- Ventilatori EC
- Compressori Scroll on/off
- Controllo della temperatura tramite sistemi di riscaldamento e post riscaldamento con resistenze elettriche, acqua calda e gas caldo
- · Controllo dell'umidità tramite deumidifica e umidifica
- Kit basse temperature per un funzionamento ottimale nel caso di installazione in ambienti particolarmente freddi (su richiesta)
- Ampia scelta di accessori tra cui moduli di base, plenum per canalizzazione, plenum per Free-Cooling diretto
- Filtri aria classe G3 di standard. Filtri aria G4, M5, F7 (su richiesta)
- Doppia alimentazione elettrica con switch automatico (su richiesta)
- Modulazione della ventilazione a portata costante (airflow control) o a sovrappressione disponibile costante (ΔP control)(su richiesta)
- Valvole di espansione elettronica

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

Safety in the server room


All models in the TREF DX W range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

HiRef is constantly committed to the search for refrigerants that have an increasingly reduced environmental **impact.** The use of ASHRAE Class A1 refrigerants, non-toxic and nonflammable, is essential for the "close control" application. All TREF DX W units are available with R134a and R513A refrigerants.

Dual circuit

Double-circuit versions are already available at low power levels. This solution offers maximum unit redundancy and ensures continuity of service, more precise refrigerating power and less absorption for partial Data Center loads.

TREF DX W		0201	0251	0272	0281	0302	0311	0362	0401	0422	0452	0532	0592	0602	0692	0762	0852	1002	1204
						Air t	empera	ature 24	4°C - Re	lative l	numidit	y 50 % <i>l</i>	/ Water	15°C -	30°C				
Cooling capacity	kW	27.3	29.3	30.8	32.8	38.2	35.3	45	49.5	52.4	54.2	62.9	68.4	75.4	82.4	90.8	98.7	110.7	144.2
SHR		0.93	0.9	1	0.88	0.99	0.84	0.94	0.92	0.91	0.89	0.86	0.83	0.9	0.87	0.85	0.87	0.82	0.77
EER		6.62	7.01	7.05	6.5	6.56	6.21	6.43	6.71	6.35	6.39	6.13	5.92	6.65	6.37	6.09	6.56	6.27	6.34
Total absorbed power	kW	5.2	5.3	6.3	6.3	7.8	7	9	9.3	10.2	10.4	12.9	14.1	14.4	16	18	18.3	21	25.5
						Air t	empera	ature 30	O°C - Re	lative l	humidit	y 35 % /	/ Water	15°C -	30°C				
Cooling capacity	kW	29.8	31.6	35.5	35	43	37.4	49.7	53.3	56.4	57.6	66.8	72.5	80.6	87.4	96.5	106.1	118.1	153.1
SHR		1	1	1	1	1	1	1	1	1	1	1	0.99	1	1	1	1	0.99	0.92
EER		7.23	7.78	8.24	7.08	7.4	6.68	7.13	7.36	6.84	6.92	6.61	6.34	7.24	6.85	6.56	6.91	6.73	6.84
Total absorbed power	kW	5.2	5.2	6.3	6.2	7.8	6.9	8.9	9.2	10.2	10.3	12.7	14	14.2	15.9	17.8	18.7	20.9	25.1
Rated air flow	m³/h	6800	6800	12950	7280	12950	7280	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	24000
Number of circuits		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2
Number of compressors		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	4
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	55	56	59	58	61	58	62	63	6	5	6	7		68		7	6	80
Dimensions [WxHxD]	mm	1010×20	00×805	1760 x2000 x805	1270 x2000 x805	1760 x2000 x805	1270 x2000 x805		1760×20	000×805		X21	120 100 105	251	0x2000x	805	2510×20	00×950	3160 x2000 x950
Power supply	V/ph/Hz									400/3	+N/50								

Performance data relating to Downflow versions with R410A refrigerant. | Also available with 60 Hz power supply. | Height of model Displacement 2250 mm.

TREF DX Z		0201	0251	0272	0281	0302	0311	0362	0401	0422	0452	0532	0592	0602	0692	0762	0852	1002	120
						Air t	empera	ture 24	°C - Re	lative h	umidit	y 50 % /	Water	40°C -	45°C				
Cooling capacity	kW	23.4	25.6	28.1	29.6	34.5	32.6	39.5	43.8	43.6	48	54.9	61.2	65.2	71.9	79	84.7	96.5	128.8
SHR		0.96	0.95	1	0.92	1	0.88	0.99	0.96	0.94	0.91	0.89	0.85	0.89	0.87	0.84	0.94	0.87	0.81
EER		4.16	4.21	4.76	4.18	4.36	4.08	4.11	4.2	3.87	3.93	3.86	3.81	4.08	3.92	3.77	4.29	4.04	3.86
Total absorbed power	kW	6.7	7.2	7.9	8.4	9.9	9.3	11.6	12.4	13.2	14.2	16.8	18.7	19.1	21.4	24	23.1	27.2	36.1
						Air t	empera	ture 30)°C - Re	lative h	umidit	y 35 % /	Water	40°C -	45°C				
Cooling capacity	kW	26.3	28.2	30.8	32.5	39.2	34.9	44.4	48.5	48.5	52.1	59.4	65.5	71.9	77.6	84.6	93.7	104.8	137.9
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.97
EER		4.68	4.67	5.28	4.6	4.96	4.39	4.62	4.67	4.31	4.29	4.18	4.09	4.54	4.23	4.04	4.69	4.35	4.15
Total absorbed power	kW	6.7	7.1	7.8	8.3	9.9	9.2	11.6	12.4	13.2	14.1	16.8	18.6	18.9	21.4	24	23.3	27.4	36
Rated air flow	m³/h	6800	6800	12950	7280	12950	7280	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	2400
Number of circuits		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2
Number of compressors		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	55	56	59	58	61	58	62	63	6	5	6	7		68		7	6	80
Dimensions [WxHxD]	mm	1010×20	00x805	1760 x2000 x805	1270 x2000 x805	1760 x2000 x805	1270 x2000 x805		1760×20	000x805		2020x2	000 x 805	251	0x2000x	805	2510×20)00 x 950	3160 x200 x950
Power supply	V/ph/Hz									400/3	+N/50								

Performance data relating to Downflow versions with R410A refrigerant. | Also available with 60 Hz power supply. | Height of model Displacement 2250 mm.

TREF DX F units are water-condensed perimeter-mounted cabinets that are able to exploit **the effect of indirect water-based Free-Cooling**. The F Series uses Dry Cooler water as both a cooling source for Free-Cooling and a heat exchange fluid for condensing the cooling circuit. TREF DX F units are "monobloc" units inside which the **entire cooling circuit is concentrated**. Condensation takes place through a brazed plate heat exchanger made of AISI 304 stainless steel.

Maximum energy saving

In periods when the air outside is cooler than the warm air inside the Data Center, the cold water produced by the dry cooler directly feeds the heat exchange coil, which is able to provide a part or all of the required cooling capacity. Before returning to the dry cooler, the water is reused inside the plate exchanger, serving the compressor. The entire process is regulated by a 3-way valve directly controlled by HiRef software, which maximizes the Free-Cooling effect and checks the cooling circuit. In this way the work of the compressor is significantly reduced, and shuts down when a state of Free-Cooling is fully reached, with a significant reduction in the system's PUE.

Safety in the server room

All models in the TREF DX F range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the

- Refrigerante R410A. Disponibile anche in R513A e R134a
- Ventilatori EC
- Compressori Scroll on/off
- Controllo avanzato di standard
- Controllo della temperatura tramite sistemi di riscaldamento e post riscaldamento con resistenze elettriche
- Controllo dell'umidità tramite deumidifica e umidifica
- Ampia scelta di accessori tra cui moduli di base e plenum per canalizzazione
- Filtri aria classe G3 di standard. Filtri aria G4, M5, F7 (su richiesta)
- Doppia alimentazione elettrica con switch automatico (su richiesta)
- Modulazione della ventilazione a portata costante (airflow control) o a sovrappressione disponibile costante (\Delta P control)(su richiesta)
- Valvole di espansione elettronica

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components even with the units running. This makes **routine maintenance easier** in full compliance with safety standards.

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

HiRef is constantly committed to the search for refrigerants that have an increasingly reduced environmental impact. The use of ASHRAE Class A1 refrigerants, non-toxic and non-flammable, is essential for the "close control" application. All TREF DX Funits are available with R134a and R513A refrigerants.


Dual circuit

Double-circuit versions are already available at low power levels. This solution offers maximum unit redundancy and ensures continuity of service, more precise refrigerating power and less absorption for partial Data Center loads.

TREF DX F		0201	0251	0272	0281	กรกว	0311	0362	0401	0422	0452	0532	0592	0602	กลจว	0762	0852	1002	1204
TREI DAT		0201																	1201
			Aii	r tempe	rature	24°C - I	Relative	humid	ity 50%	/ Wate	er 40°C	- 45°C	/ Free-	·Cooling	water	7°C / G	lycol 3	J %	
Cooling capacity	kW	21.1	23.6	25.9	28.2	33.7	31.1	37.7	42.5	43	47.4	55.5	61.2	65.5	71.8	79.4	78.7	87.8	118.3
SHR		0.91	0.86	1	0.84	1	0.8	0.95	0.9	0.9	0.85	0.83	0.79	0.89	0.84	0.81	0.85	0.81	0.76
EER		3.74	3.84	4.36	3.94	4.23	3.86	3.9	4.04	3.79	3.85	3.87	3.78	4.06	3.89	3.77	3.98	3.69	3.51
Free-Cooling capacity	kW	25.5	28.6	42.5	32.8	48.1	34.7	51.8	57.8	57.8	57.8	62.8	66.5	86.2	91	95.7	100.4	112.1	137.3
SHR Free-Cooling		0.92	0.86	1	0.88	0.98	0.85	0.9	0.85	0.85	0.85	0.89	0.86	0.87	0.85	0.82	0.86	0.82	0.78
Total absorbed power	kW	6.8	7.3	8.2	8.4	10.2	9.3	11.9	12.7	13.6	14.5	17.1	18.9	19.6	21.9	24.5	23.3	27.3	36.5
			Air	tempe	rature	30°C - F	Relative	humid	ity 35 %	/ Wate	r 40°C	- 47°C	/ Free-	Cooling	water	12°C / (Slycol 3	0%	
Cooling capacity	kW	23.3	25.6	27.9	30.1	37.9	32.8	42	46.4	46.9	51	58.8	64.4	71.1	76.7	83.4	84.4	93.2	123.6
SHR		1	1	1	1	1	0.97	1	1	1	1	0.99	0.95	1	1	0.98	1	0.98	0.91
EER		3.96	4.02	4.57	4.07	4.6	3.93	4.19	4.27	3.98	4	3.96	3.85	4.27	4.01	3.81	4.09	3.75	3.55
Free-Cooling capacity	kW	25	26	40.1	31.5	47.8	32.7	49.8	51.7	51.7	53.6	60.4	62.7	78.3	81.3	84.4	96.5	104	119.1
SHR Free-Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	7.1	7.5	8.3	8.7	10.5	9.6	12.3	13.1	14	15	17.6	19.5	20.1	22.6	25.3	24.1	28.3	37.6
Rated air flow	m³/h	6800	6800	12950	7280	12950	7280	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	24000
Number of circuits		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2
Number of compressors		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	56	57	60	59	62	59	63	64	6	6	6	8		69		7	17	81
Dimensions [WxHxD]	mm	1010×20	00x805	1760 x2000 x805	1270 x2000 x805	1760 x2000 x805	1270 x2000 x805		1760×20	00 x 805		20 x20 x8	000	2510)x2000>	805	2510x20	000 x 950	3160 x2000 x950
Power supply	V/ph/Hz									400/3	+N/50	7.0							500

Performance data relating to Downflow versions with R410A refrigerant. I Also available with 60 Hz power supply. | Height of model Displacement 2250 mm.

TREF DX D/K/Q **OHIRef** TREF DX K > 21.2-126.4 kW

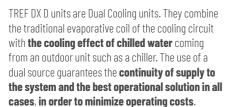
DUAL COOLING PERIMETER MOUNTED UNITS **FOR DATA CENTERS**

INDUSTRIAL

TREF DX D > 20.7-124.3 kW

TREF DX Q > 24.9-143.3 kW

DATA CENTER



Only Mod. Q and K

Remote condensers

All TREF DX D units can be combined with HiRef remote condensers, choosing from different combinations to meet all system needs. Oversize remote condensers are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while **the compact condensers** on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single cooling circuit for maximum reliability and redundancy of the system or with a double cooling circuit, to reduce installation spaces and costs.

- - · Scroll on/off compressors

R513A and R134a

Advanced control comes as standard

• Refrigerant R410A: Also available with

- Temperature control through heating and post-heating systems with electric heating elements
- Humidity control through dehumidification and humidification
- · Broad choice of accessories, including base modules and plenums for ducting
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Constant flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (on request)
- Electronic expansion valves
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Long distance kits for optimal operation in the case of large distances between indoor and outdoor units (on request)

Safety in the server room

All models in the TREF D range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes routine maintenance easier in full compliance with safety standards.

Maximum flexibility

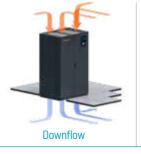
The Dual Cooling units combine the reliability of a dual source with the ease of operation of HiRef cabinets. The on-board control allows you to select the source according to different logics, at your discretion.

Green

HiRef is constantly committed to the search for refrigerants that have an increasingly reduced **environmental impact.** The use of ASHRAE Class A1 refrigerants, non-toxic and non-flammable, is essential for the "close control" application. All TREF DX D units are available with R134a and R513A refrigerants.

Dual circuit

Double-circuit versions are already available at low power levels. This solution offers **maximum unit** redundancy and ensures continuity of service, more precise refrigerating power and less absorption for partial Data Center loads.

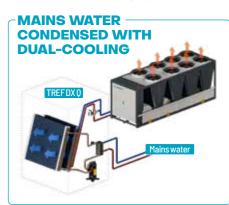


TREF DX D		0201	0251	0272	0281	0302	0311	0362	0401	0422	0452	0532	0592	0602	0692	0762	0852	1002	1204
			_	peratur	_		_												
Cooling capacity	kW	20.7	23.7	25.6	27.5	33.4	31.1	36.6	42.3	42	46.3	54.9	60.1	63.3	71.4	77.4	79.1	86.8	117.4
SHR		0.92	0.86	1	0.85	1	0.8	0.96	0.9	0.9	0.86	0.83	0.8	0.9	0.85	0.82	0.85	0.81	0.76
EER		3.5	3.91	4.22	3.68	4.1	3.84	3.55	4	3.59	3.56	3.74	3.53	3.69	3.8	3.52	4.03	3.59	3.44
Chilled water cooling capacity	kW	23.2	23.2	48.1	23.5	48.1	23.5	48.1	48.1	48.1	48.1	44.9	44.9	67.8	67.8	67.8	86.1	86.1	109.2
Chilled Water SHR		1	1	0.98	1	0.98	1	0.98	0.98	0.98	0.98	1	1	1	1	1	0.94	0.94	0.87
Total absorbed power	kW	7.1	7.3	8.3	8.8	10.4	9.4	12.5	12.8	13.9	15.2	17.4	19.8	20.6	22.3	25.5	23.1	27.6	36.9
			Air tem	peratur	e 30°C	- Relati	ve hum	idity 3	5% / Ou	tdoor a	air Tem	peratur	e 35°C/	Water	tempe	rature l	n 10°C	Out 15°C	
Cooling capacity	kW	23.1	25.7	27.8	29.8	37.5	33.2	41.1	46.3	46.5	49.9	58.9	63.6	69.6	76.9	82.5	85.8	93.2	124.3
SHR		1	1	1	1	1	0.97	1	1	1	1	0.99	0.96	1	1	0.98	1	0.98	0.91
EER		3.78	4.19	4.52	3.94	4.48	4.04	3.87	4.29	3.9	3.76	3.98	3.69	3.97	4.03	3.69	4.28	3.75	3.6
Chilled water cooling capacity	kW	29.9	29.9	61.5	36.3	61.5	36.3	61.5	61.5	61.5	61.5	67	67	90.6	90.6	90.6	115.1	115.1	128.3
Chilled Water SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	7.3	7.3	8.4	8.9	10.6	9.5	12.8	13	14.2	15.5	17.6	20	21	22.6	25.8	23.5	28.3	37.4
Rated air flow	m³/h	6800	6800	12950	7280	12950	7280	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	24000
Number of circuits		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2
Number of compressors		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	56	57	60	59	62	59	63	64	6	6	6	8		69		7	7	81
Dimensions [WxHxD]	mm	x21	110 000 805	1760 x2000 x805	1270 x2000 x805	1760 x2000 x805	1270 x2000 x805		1760×20	100×805		X20	20 000 05	2510	0x2000x	805	25 x 20 x 9	000	3160 x2000 x950
Power supply	V/ph/Hz									400/3	+N/50								

Performance data relating to Downflow versions with R410A refrigerant combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Height of model Displacement

AIRFLOW CONFIGURATIONS

TREF DX D/K/Q



Performance data relating to Downflow versions with R410A refrigerant. | Also available with 60 Hz power supply. | Height of model Displacement 2250 mm.

TREF DX Q		0201	0251	0272	0281	0302	0311	0362	0401	0422	0452	0532	0592	0602	0692	0762	0852	1002	1204
			A	ir temp	eratur	e 24°C -	Relativ	/e humi	idity 50	% / Wa	iter 15°	C - 30°C	/ Wate	er temp	erature	In 7°C	Out 12°	C	
Cooling capacity	kW	24.9	26.9	30.6	31.9	39.5	35	45.1	48.6	50.6	54.1	63.2	68.8	74.1	81.9	90.2	89	98.7	136.2
SHR		0.84	0.81	1	0.79	0.93	0.76	0.87	0.84	0.82	0.8	0.78	0.75	0.83	0.8	0.76	0.81	0.77	0.72
EER		6.04	6.33	6.99	6.23	6.8	6.08	6.45	6.6	6.13	6.36	6.14	5.94	6.48	6.28	6.03	6.02	5.6	5.93
Chilled water cooling capacity	kW	23.2	23.2	48.1	23.5	48.1	23.5	48.1	48.1	48.1	48.1	44.9	44.9	67.8	67.8	67.8	86.1	86.1	109.2
Chilled Water SHR		1	1	0.98	1	0.98	1	0.98	0.98	0.98	0.98	1	1	1	1	1	0.94	0.94	0.87
Total absorbed power	kW	5.3	5.4	6.6	6.4	8	7	9.2	9.6	10.5	10.7	13	14.3	14.9	16.5	18.4	18.3	21.1	25.8
			A	ir temp	erature	30°C -	Relativ	e humi	dity 35°	% / Wa	ter 15°C	- 30°C	/ Wate	r temp	erature	In 10°C	Out 15	°C	
Cooling capacity	kW	27.2	28.7	34.9	34.1	44.6	37.4	49.4	52.3	54.4	57.9	67.1	73.6	79.3	87	95.6	95.2	105.4	143.3
SHR		1	0.98	1	0.95	1	0.91	1	1	0.99	0.96	0.94	0.9	1	0.96	0.91	0.97	0.92	0.85
EER		6.59	6.88	8.1	6.78	7.66	6.6	7.08	7.21	6.59	6.96	6.61	6.42	7.07	6.76	6.46	6.34	5.99	6.28
Chilled water cooling capacity	kW	29.9	29.9	61.5	36.3	61.5	36.3	61.5	61.5	61.5	61.5	67	67	90.6	90.6	90.6	115.1	115.1	128.3
Chilled Water SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total absorbed power	kW	5.3	5.4	6.5	6.3	8	7	9.2	9.5	10.5	10.6	12.9	14.2	14.7	16.3	18.3	18.5	21.1	25.7
Rated air flow	m³/h	6800	6800	12950	7280	12950	7280	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	2400
Number of circuits		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2
Number of compressors		1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	4
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	56	57	60	59	62	59	63	64	6	6	6	8		69		7	7	81
Dimensions [WxHxD]	mm	x20	10 000 05	1760 x2000 x805	1270 x2000 x805	1760 x2000 x805	1270 x2000 x805		1760×20	00x805		20 x20 x8	000	2510)x2000x	805	25 x20 x9	000	3160 x200 x950
Power supply	V/ph/Hz									400/3	+N/50								

Performance data relating to Downflow versions with R410A refrigerant. | Also available with 60 Hz power supply. | Height of model Displacement 2250 mm.

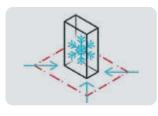
The JREF CW Radial series perimeter mounted units are chilled water units with EC radial fans for small-sized premises such as server rooms and labs or for applications where **accurate control of thermo-hygrometric parameters and round-the-clock operation are required**. In-depth CFD (computational fluid dynamics) analysis has allowed for the meticulous design of every last constructive detail to **minimise air pressure drops and, therefore, fan power consumption**. Air through-flow sections have been expanded to make **installation and maintenance operations faster and easier**.

Extended filter section

Air filters, located on the entire surface of the coil, maximize the filtering section and minimize the unit's air pressure drops.

Ventilation adjustment

Depending on the air distribution logic in the server room, it is possible to adjust the machine on-board ventilation system to ensure **a constant air flow rate** (airflow control) or **a constant available overpressure** (ΔP control). The latter is particularly useful if a floating floor is used.


AIRFLOW CONFIGURATIONS -

- Temperature control through heating and post-heating systems using electric heating elements, additional hot water coil, or both
- Humidity control through dehumidification and humidification
- Humidifier installed on board the machine
- Fan speed modulation based on thermal load (constant ΔT)
- Broad choice of accessories including basic modules, plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Constant flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (on request)
- Instant reading of water flow rate, water inlet and outlet temperatures, or cooling capacity (on request)

High power density

The reduced footprint and high efficiency offer higher cooling capacity. In this way the space dedicated to the units in the Data Center is minimized, making the most of available spaces.

Double circuit

Chilled water units are also available with a double circuit. In this version the supply is via two different hydraulic circuits that can offer the utmost operational continuity if one of the two circuits malfunctions. Each circuit is equipped with a regulating valve

Ventilation EC

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT . Their accurate adjustment allows an efficient use of power for ventilation and **a consequent reduction of the system's PUE.** Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation **even in the event of microprocessor malfunctions.**

Finned pack coil with hydrophilic coating

All models in the JREF CW Radial range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air throughflow speeds - helps condensate collection and outflow during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Accurate regulation with multiple types of valves

All units in the JREF CW Radial range have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system or with servo motor with spring return. Pressure-independent valves can also be fitted on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes routine maintenance easier in full compliance with safety standards.

JREF CW R		0150	0170	0210	0250	0270	0320
			Air temperature 24°	C - Relative humidity	50% / Water tempera	ature In 7°C Out 12°C	
Cooling capacity	kW	14.6	17	21.2	24.8	27.2	31.7
SHR		0.9	0.88	0.8	0.84	0.86	0.8
EER		19.55	21.34	23.96	20.79	23.17	27.54
			Air temperature 30°	C - Relative humidity	35% / Water tempera	ture In 10°C Out 15°C	
Cooling capacity	kW	17.7	20.2	21.9	27.4	31.4	32.9
SHR		1	1	1	1	1	0.99
EER		23.62	25.33	24.83	22.98	26.72	28.56
			Air temperature 35°(- Relative humidity	30% / Water tempera	ture In 15°C Out 20°C	
Cooling capacity	kW	17.8	20.3	22	27.6	31.5	32.9
SHR		1	1	1	1	1	1
EER		23.84	25.46	24.86	23.14	26.83	28.59
Rated air flow	m³/h	4130	4130	4130	6130	6060	5930
Total fan absorbed power	kW	0.8	0.8	0.9	1.2	1.2	1.1
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	59	60	61		62	
Dimensions [WxHxD]	mm		600x2000x600			900x2000x600	
Power supply	V/ph/Hz			400/3	+N/50		

Performance data relating to Downflow versions. | Also available with 60 Hz power supply. | Height of model Displacement 2100 mm.

The JREF DX Radials series perimeter mounted units are direct expansion units with EC radial fans designed to be installed in small-sized premises such as server rooms and labs or for applications where **accurate control of thermo-hygrometric parameters and round-the-clock operation are required**. The top priority for internal design and for the choice of components is **energy efficiency** - to **optimise the system overall electricity consumption** with a positive impact on the Data Center Power Usage Effectiveness (PUE).

Versatile and flexible range

It is available with different cooling configurations:

Air condensed units with remote condenser.

Mains water condensed units (15°C) with on board plate condenser.

Dry Cooler water condensed units (15°C) with on board plate condenser.

The JREF DX A Radial units are air-condensed perimeter-mounted units in the JREF range; they are widely used for the cooling of Data Centers. The air-condensed solution offers **a simple system design**, thanks to the absence of auxiliary circuits and pumps; the cooling circuit is managed by the cabinet, and both the indoor unit and the remote condenser are **easy to install**.

AIRFLOW CONFIGURATIONS

- Refrigerant R410A: Also available with R513A and R134a
- FC Fans
- Scroll on/off compressors
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas
- Humidity control through dehumidification and humidification
- Broad choice of accessories including basic modules, plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Constant flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (on request)
- Electronic expansion valves
- Long distance kits for optimal operation in the case of large distances between indoor and outdoor units (on request)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)

Safety in the server room

All models in the JREF DX A Radial range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Green

HiRef is constantly committed to the search for refrigerants that have an increasingly reduced environmental impact. The use of ASHRAE Class A1 refrigerants, non-toxic and non-flammable, is essential for the "close control" application. JREF DX A Radial units are available with R134a and R513A refrigerants.

Ventilation EC

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT . Their accurate adjustment allows an efficient use of power for ventilation and **a consequent reduction of the system's PUE.** Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation **even in the event of microprocessor malfunctions.**

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

Easier scheduled maintenance

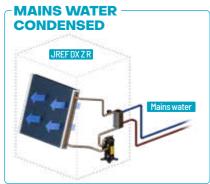
The unit has been painstakingly designed to ensure frontal access to components. This makes routine maintenance easier in full compliance with safety standards.

Remote condensers

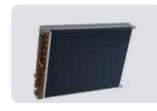
All units can be combined with HiRef remote condensers, choosing from different combinations to meet all system needs. Oversize remote condensers are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while the compact condensers on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single cooling circuit for **maximum** reliability and redundancy of the system or with a double cooling circuit, to reduce installation spaces and costs.

JREF DX A R		0060	0800	0100	0110	0130	0160	0190	0205	0212
			Air	temperature 2	24°C - Relative	humidity 50%	/ Outdoor Air	Temperature 3	5°C	
Cooling capacity	kW	6.5	8.6	10.8	11.9	13.8	16.7	19.7	22.6	22.8
SHR		0.99	0.94	0.98	0.97	0.89	1	0.95	0.89	0.88
EER		3.49	4.76	3.92	3.89	3.38	3.83	3.82	4.12	3.79
Total absorbed power	kW	2	2	3	3.3	4.5	5.2	6	6.3	6.8
			Air	temperature 3	60°C - Relative	humidity 35%	/ Outdoor air 1	Temperature 3	5°C	
Cooling capacity	kW	7.1	9.4	12.1	13.4	15.2	18.9	22.1	24.7	24.9
SHR		1	1	1	1	1	1	1	1	1
EER		3.71	5.14	4.33	4.32	3.63	4.17	4.16	4.43	4.09
Total absorbed power	kW	2	2	3.1	3.4	4.6	5.4	6.1	6.4	6.9
Rated air flow	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100
Number of circuits		1	1	1	1	1	1	1	1	2
Number of compressors		1	1	1	1	1	1	1	1	2
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	49	50	Ę	3	54	55		56	
Dimensions [WxHxD]	mm	600x18	75x600				900x1875x600			
Power sunnly	V/nh/Hz					400/3+N/50				

Performance data relating to Downflow versions with R410A refrigerant combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm.


WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX W > 6.6-24.2 kW JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX Z > 7.3-26.5 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.6-24.2 kW JREF DX W

JREF W Radial units are water-condensed perimeter-mounted cabinets and they use Dry Cooler water. The JREF units of this series are "monobloc" units inside which **the entire cooling circuit is concentrated**. Cooling is via a **brazed plate exchanger made of stainless steel AISI 304**.


JREF Z Radial units are water-condensed perimeter-mounted cabinets they use low temperature mains water or groundwater (15°C). The JREF units of this series are "monobloc" units inside which **the entire cooling** circuit is concentrated. Cooling is via a **brazed plate exchanger made of stainless steel AISI 304**.

AIRFLOW CONFIGURATIONS Upflow Downflow Displacement

- Refrigerant R410A: Also available with R513A and R134a
- FC Fans
- Scroll on/off compressors
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas
- Humidity control through dehumidification and humidification
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Broad choice of accessories including basic modules, plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Constant flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (on request)
- Electronic expansion valves

Safety in the server room

All models in the JREF W Radial range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Ventilation EC

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT . Their accurate adjustment allows an efficient use of power for ventilation and a **consequent reduction of the system's PUE.** Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation **even in the event of microprocessor malfunctions.**

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

HiRef is constantly committed to

the search for refrigerants that have an increasingly reduced

environmental impact. The use of ASHRAE Class A1 refrigerants, non-toxic and non-flammable, is essential for the "close control" application. All JREF W Radial units are available with R134a and R513A

refrigerants.

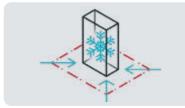
Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes routine maintenance easier in full compliance with safety standards.

JREF DX W R		0060	0800	0100	0110	0130	0160	0190	0205	0212
				Air tempera	iture 24°C - Re	lative humidit	y 50% / Water	40°C - 45°C		
Cooling capacity	kW	6.6	8	10.5	11.5	13.6	16.3	18.9	20.8	22
SHR		0.98	0.98	1	0.98	0.91	1	0.97	0.93	0.9
EER		3.82	3.78	3.54	3.54	3.18	3.66	3.45	3.17	3.35
Total absorbed power	kW	1.9	2.3	3.2	3.5	4.7	5.3	6.3	7.4	7.4
				Air tempera	nture 30°C - Re	lative humidit	y 35% / Water	40°C - 45°C		
Cooling capacity	kW	7.3	8.8	11.8	13.2	15.1	18.7	21.5	23.1	24.2
SHR		1	1	1	1	1	1	1	1	1
EER		4.12	4.17	4	4.04	3.49	4.17	3.88	3.48	3.69
Total absorbed power	kW	1.9	2.3	3.2	3.5	4.7	5.3	6.4	7.5	7.4
Rated air flow	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100
Number of circuits		1	1	1	1	1	1	1	1	2
Number of compressors		1	1	1	1	1	1	1	1	2
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	49	50	5	3	54	55		56	
Dimensions [WxHxD]	mm	600x18	75x600				900x1875x600			
Power supply	V/ph/Hz					400/3+N/50				

Performance data relating to Downflow versions with R410A refrigerant. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm.

IDEE BY T.B.		0000	0000	0100	0110	0170	0100	0100	0005	0010
JREF DX Z R		0060	0800	0100	0110	0130	0160	0190	0205	0212
				Air tempera	ature 24°C - Re	elative humidit	y 50% / Water	15°C - 30°C		
Cooling capacity	kW	7.3	9.1	11.7	12.8	15.7	19.1	22.2	24.1	24.5
SHR		0.89	0.89	0.94	0.92	0.86	0.93	0.9	0.86	0.85
EER		5.99	6.07	5.21	5.01	5.03	5.8	5.53	4.99	4.74
Total absorbed power	kW	1.3	1.7	2.5	2.8	3.5	4.1	4.8	5.7	6
				Air tempera	ature 30°C - Ro	elative humidit	y 35% / Water	15°C - 30°C		
Cooling capacity	kW	7.8	9.9	12.9	14.3	16.8	21.2	24.3	25.9	26.5
SHR		1	1	1	1	1	1	1	1	1
EER		6.39	6.55	5.73	5.57	5.37	6.39	5.97	5.34	5.14
Total absorbed power	kW	1.3	1.7	2.5	2.9	3.5	4.2	4.9	5.7	6
Rated air flow	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100
Number of circuits		1	1	1	1	1	1	1	1	2
Number of compressors		1	1	1	1	1	1	1	1	2
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	49	50	5	53	54	55		56	
Dimensions [WxHxD]	mm	600x18	75x600				900x1875x600			
Power supply	V/ph/Hz					400/3+N/50				


Performance data relating to Downflow versions with R410A refrigerant. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm.

The JREF CW Centrifugal series perimeter mounted units are chilled water units with AC centrifugal fans for small-sized premises such as server rooms and labs or for applications where accurate control of thermo-hygrometric parameters and roundthe-clock operation are required. The internal design and the choice of components are primarily aimed at **ensuring a compact design to make** unit installation as easy as possible.

High power density

The reduced footprint and high efficiency offer higher cooling capacity. In this way the space dedicated to the units in the Data Center is minimized, making the most of available spaces.

Double circuit

Chilled water units are also available with a double circuit. In this version the supply is via two different hydraulic circuits that can offer the utmost operational continuity if one of the two circuits malfunctions. Each circuit is equipped with a regulating valve

- Temperature control through heating and post-heating systems using electric heating elements, additional hot water coil, or both
- Humidity control through dehumidification and humidification
- Fan speed modulation based on thermal load (constant ΔT)
- Broad choice of accessories including basic modules, plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Instant reading of water flow rate, water inlet and outlet temperatures, or cooling capacity (on request)

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This makes **routine** maintenance easier in full compliance with safety standards.

Finned pack coil with hydrophilic coating

All models in the JREF CW Centrifugal range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection and outflow during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Upflow

Accurate regulation with multiple types of valves

All units in the JREF CW Centrifugal range have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system or with servo motor with spring return. Pressure-independent valves can also be fitted on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.

JREF CW C		0800	0110	0140	0160	0200	0230
		Air tempe	rature 24°C - Re	lative humidity	50% / Water te	mperature In 7°	°C Out 12°C
Cooling capacity	kW	6.9	10	12.8	14.5	18.7	20.8
SHR		0.87	0.85	0.88	0.87	0.88	0.85
EER		31.27	35.76	22.84	25.83	27.86	31.06
		Air tompor	veture 70°C De	lativa humiditu	7E% / Weter ter	mnovotuvo la 10	°C 0+ 1E°C

2HK		0.94	l I		l l		I
EER		40	38.09	27.34	30.44	32.53	35.35
		Air temper	ature 35°C - Re	lative humidity	30% / Water ter	mperature In 15°	°C Out 20°C
Cooling capacity	kW	8.9	10.7	15.4	17.1	22	23.8
SHR		0.94	1	1	1	1	1
EER		40.25	38.24	27.53	30.56	32.77	35.49
Rated air flow	m³/h	1785	2150	3530	3470	5115	4990
Total fan absorbed power	kW	0.2	0.3	0.6	0.6	0.7	0.7
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	48	50	5	i1	5	2
Dimensions [WxHxD]	mm	600x18	75 x 449	900x18	75 x 449	1200x18	75x449
Power sunnly	V/nh/Hz			/,00/3	+N/50		

Performance data relating to Downflow versions. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm.

www.hiref.com 21

Cooling capacity

The JREF DX Centrifugal units are direct expansion units with centrifugal AC fans designed to be installed in small-sized premises such as server rooms and labs or for applications where accurate control of thermo-hygrometric parameters and round-the-clock operation are **required**. The internal design and the choice of components are primarily aimed at ensuring a compact design to make unit installation as flexible as possible.

JREF DX A Centrifugal units are air-condensed perimetermounted units in the JREF range; they are widely used for the cooling of Data Centers. The air-condensed solution offers **simple system design**, thanks to the absence of auxiliary circuits and pumps; the cooling circuit is managed by the cabinet, and both the indoor unit and the remote condenser are easy to install.

Versatile and flexible range

The JREF DX range is available with different refrigeration configurations.

Air condensing with remote condenser.

Dry Cooler or Evaporative tower water condensing.

Mains water condensing (15°C).

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components even with the units running. This makes routine maintenance easier in full compliance with safety standards.

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

- Refrigerant R410A: Also available with R513A and R134a
- Scroll on/off compressors
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot
- Humidity control through dehumidification and humidification
- · Broad choice of accessories including basic modules, plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Electronic expansion valves
- Long distance kits for optimal operation in the case of large distances between indoor and outdoor units (on request)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)

Safety in the server room

All models in the JREF DX A Centrifugal range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds

- helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

HiRef is constantly committed to the search for refrigerants that have an increasingly reduced **environmental impact.** The use of ASHRAE Class All refrigerants, non-toxic and non-flammable, is essential for the "close control" application. All JREF DX A Centrifugal units are available with R134a and R513A refrigerants.

Remote condensers

All units can be combined with HiRef remote condensers, choosing from different combinations to meet all system needs. Oversize remote condensers are ideal for warmer environments, where it is necessary to keep the condensing temperature under control, while the compact condensers on the other hand are small in terms of both size and consumption. The condensers, used with dual-circuit units, are available with a single cooling circuit for **maximum** reliability and redundancy of the system or with a double cooling circuit, to reduce installation spaces and costs.

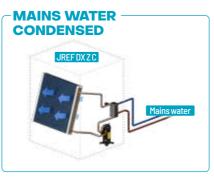
AIRFLOW CONFIGURATIONS

Displacement

JREF DX A C		0060	0800	0100	0110	0130	0160	0190	0205
			Air ten	nperature 24°C -	Relative humidi	ty 50% / Outdoo	r Air Temperatu	re 35°C	
Cooling capacity	kW	6.5	8.6	11.2	12.3	14.6	16.2	19.7	22.6
SHR		0.99	0.94	0.99	0.95	0.9	0.98	0.94	0.87
EER		3.52	4.79	4.06	4.01	3.53	3.71	3.82	4.12
Total absorbed power	kW	2.1	2.1	3.3	3.6	4.7	5	5.8	6.2
			Air ten	nperature 30°C -	Relative humidi	ty 35% / Outdoo	r air Temperatu	re 35°C	
Cooling capacity	kW	7.1	9.4	12.4	13.7	16	18.3	21.9	24.4
SHR		1	1	1	1	1	1	1	1
EER		3.7	5.19	4.43	4.39	3.79	4.08	4.12	4.39
Total absorbed power	kW	2.2	2.1	3.4	3.7	4.8	5.2	6	6.2
Rated air flow	m³/h	1785	2150	3690	3530	3470	5115	4990	4990
Number of circuits		1	1	1	1	1	1	1	1
Number of compressors		1	1	1	1	1	1	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	46	L	+8	49	51	52	5	3
Dimensions [WxHxD]	mm	600x18	75x449		900x1875x449			1200x1875x449	
Power supply	V/ph/Hz				400/3	+N/50			

Performance data relating to Downflow versions with R410A refrigerant combined with standard HiRef remote condenser. | Also available with 60 Hz power supply. | Model height Displacement 2125

SOUL CONTRIBUTION OF REPRESENT. DATA CENTER INDUSTRIAL WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.7-23.7 kW JREF DX Z > 7.4-27.7 kW WHITE-PRINCIPLE CONFUSIONS INDUSTRIAL WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.7-23.7 kW JREF DX Z > 7.4-27.7 kW WHITE-PRINCIPLE CONFUSIONS INDUSTRIAL WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.7-23.7 kW JREF DX Z > 7.4-27.7 kW WHITE-PRINCIPLE CONFUSIONS INDUSTRIAL WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.7-23.7 kW JREF DX Z > 7.4-27.7 kW WHITE-PRINCIPLE CONFUSIONS INDUSTRIAL WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.7-23.7 kW JREF DX Z > 7.4-27.7 kW WHITE-PRINCIPLE CONFUSIONS INDUSTRIAL WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.7-23.7 kW WHITE-PRINCIPLE CONFUSIONS INDUSTRIAL WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.7-23.7 kW WHITE-PRINCIPLE CONFUSIONS INDUSTRIAL WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.7-23.7 kW WHITE-PRINCIPLE CONFUSIONS INDUSTRIAL WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.7-23.7 kW WHITE-PRINCIPLE CONFUSIONS INDUSTRIAL WATER CONDENSED PERIMETER MOUNTED UNITS FOR DATA CENTERS JREF DX W > 6.7-23.7 kW WHITE-PRINCIPLE CONFUSIONS INDUSTRIAL WHITE-PRINCIPLE CONFUSIONS INDUS


JREF W Centrifugal units are water-condensed perimeter-mounted cabinets, and they use Dry Cooler water. The JREF units of this series are "monobloc" units inside which **the entire cooling circuit is concentrated**. Cooling is via a **brazed plate exchanger made of stainless steel AISI 304**.

JREF Z Centrifugal units are water-condensed perimeter-mounted cabinets, and they use low temperature mains water or groundwater (15°C). The JREF units of this series are "monobloc" units inside which **the entire** cooling circuit is concentrated. Cooling is via a **brazed plate exchanger made of stainless steel AISI**

- AIRFLOW CONFIGURATIONS -

- Refrigerant R410A: Also available with R513A and R134a
- Scroll on/off compressors
- Temperature control through heating and post-heating systems with electric heating elements, hot water and hot gas
- Humidity control through dehumidification and humidification
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)
- Broad choice of accessories including basic modules, plenums for ducting, plenums for direct Free-Cooling
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Electronic expansion valves

Efficiency

The performance, reliability and efficiency of HiRef units are guaranteed by using the best quality components and by cleverly designed internal and external layouts.

Safety in the server room

All models in the JREF W/Z
Centrifugal range feature heat
exchange coils with hydrophilic
coating. This special coating together with adequate adjustment
of air through-flow speeds - helps
condensate collection during
the dehumidification process,
preventing any dripping on the
inside and outside of the unit.

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components even with the units running. This makes routine maintenance easier in full compliance with safety standards.

Green

HiRef is constantly committed to the search for refrigerants that have an increasingly reduced environmental impact. The use of ASHRAE Class AI refrigerants, non-toxic and non-flammable, is essential for the "close control" application. All JREF W/Z Centrifugal units are available with R134a and R513A refrigerants.

JREF DX W C		0060	0800	0100	0110	0130	0160	0190	0205
				Air temperature	24°C - Relative h	umidity 50% / V	Vater 40°C - 45°C	:	
Cooling capacity	kW	6.7	8.1	11	12.1	14.9	16.3	19.8	21.8
SHR		0.97	0.97	0.99	0.97	0.9	0.98	0.94	0.89
EER		3.91	3.92	3.82	3.81	3.66	3.91	3.9	3.63
Total absorbed power	kW	1.9	2.4	3.4	3.7	4.6	4.8	5.7	6.7
				Air temperature	30°C - Relative h	umidity 35% / V	Vater 40°C - 45°C	;	
Cooling capacity	kW	7.4	9	12.3	13.6	16.3	18.4	22	23.7
SHR		1	1	1	1	1	1	1	1
EER		4.25	4.38	4.32	4.33	4	4.42	4.33	3.95
Total absorbed power	kW	2	2.3	3.4	3.7	4.6	4.8	5.7	6.7
Rated air flow	m³/h	1785	2150	3690	3530	3470	5115	4990	4990
Number of circuits		1	1	1	1	1	1	1	1
Number of compressors		1	1	1	1	1	1	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	46	L	+8	49	51	52	5	3
Dimensions [WxHxD]	mm	600x1875x449 900x1875x449 1200x1875x449							
Power supply	V/ph/Hz				400/3	+N/50			

Performance data relating to Downflow versions with R410A refrigerant. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm.

JREF DX Z C		0060	0800	0100	0110	0130	0160	0190	0205
				Air temperature	24°C - Relative h	umidity 50% / \	Water 15°C - 30°C	C	
Cooling capacity	kW	7.4	9.3	12.4	14	17.1	19.5	23.7	25.8
SHR		0.89	0.88	0.92	0.89	0.84	0.88	0.86	0.82
EER		6.29	6.5	6.02	5.84	5.78	6.35	6.39	5.9
Total absorbed power	kW	1.4	1.7	2.6	3	3.5	3.7	4.4	5
				Air temperature	30°C - Relative h	umidity 35% / \	Water 15°C - 30°C	C	
Cooling capacity	kW	8	10.1	13.5	15.5	18.3	21.4	25.5	27.7
SHR		1	1	1	1	1	1	1	0.99
EER		6.81	7.07	6.59	6.51	6.2	6.94	6.88	6.32
Total absorbed power	kW	1.4	1.7	2.6	2.9	3.5	3.7	4.4	5
Rated air flow	m³/h	1785	2150	3690	3530	3470	5115	4990	4990
Number of circuits		1	1	1	1	1	1	1	1
Number of compressors		1	1	1	1	1	1	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	46		48	49	51	52	5	3
Dimensions [WxHxD]	mm	600x18	75x449		900x1875x449			1200x1875x449	
Power supply	V/ph/Hz				400/3	+N/50			

Performance data relating to Downflow versions with R410A refrigerant. | Also available with 60 Hz power supply. | Model height Displacement 2125 mm.

Our chilled water FanWall HBCV series air conditioners are designed for technological environments where a **compact footprint is a requirement - without any impact on these units' cooling output capacity**. An in-depth CFD (computational fluid dynamics) analysis has allowed every last constructive detail to be designed so as **to minimise internal airflow pressure drops and, therefore, fan power consumption**. At the same time, the large surface of the finned pack exchanger **minimises the approach temperatures between inlet air and outlet water, maximising system efficiency**.

Ventilation EC 2.0

The use of standard-equipment EC plug fans across the whole range - designed to adjust the air flow according to the thermal load - results in efficient use of the electricity for ventilation purposes, with a positive impact on the system PUE. Extended range speed adjustment is carried out via MODBUS protocol. The emergency speed function allows for fan operation consistency even in the event of microprocessor malfunctions.

Maximum possible redundancy

To ensure system operation continuity, the FanWall HBCV range makes it possible to have a **fully redundant refrigeration circuit:** a double coil and double water adjustment valve allow the server room to be cooled **even when either circuit fails.**

- Stainless steel condensate drain pan
- Fan speed modulation based on thermal load (constant ΔT)
- Fan speed modulation based on air flow requirements (constant Δp)
- Humidify/de-humidify feature
- Post-heating systems: with electrical heating elements and with hot water coil
- Double power supply with automatic switch (on request)
- Instantaneous reading of the supplied cooling capacity (on request)

Finned pack coil with hydrophilic coating

All models in the FanWall HBCV range feature heat exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds - helps condensate collection and outflow during the dehumidification process, preventing any dripping on the inside and outside of the unit.

Blown finned coil

According to a specific design choice, this finned coil is installed downstream of the fans. This ensures a more even distribution of the delivery air to the racks, **minimising turbulence in the air flow.**

Accurate regulation with multiple types of valves

The adjustment valve with 0-10V servomotor (standard on the whole range) can be obtained in a 2-way (requires variable flow system) or 3-way version. The other versions available with configurator are those with spring return servomotor or independent pressure valves. The flow control performance of this type of valve guarantees adjustment accuracy, while at the same time maintaining the hydronic balance in the system.

Ventilation adjustment

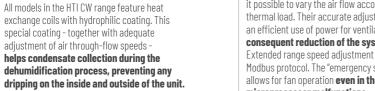
Depending on the air distribution logic in the server room, it is possible to adjust the machine on-board ventilation system to ensure **a constant air flow rate** (airflow control) **or a constant available overpressure** (ΔP control). The latter is particularly useful if a floating floor is used.

Easier scheduled maintenance

The unit has been designed with the utmost care to grant front (air inlet side) access to internal components even with the units running. This makes **routine maintenance easier in full compliance with safety standards**.

FanWall		051	102	121	171	242	342
Geometry B		Air temperat	ture 30°C - Rela	ative humidity	35% / Water te	emperature In 1	10°C Out 18°C
Cooling capacity	kW	48.5	97	118.2	173.4	236.4	346.8
SHR		1	1	1	1	1	1
EER		69.3	69.29	62.21	59.79	62.21	59.79
Geometry C		Air temperat	ure 30°C - Rela	ative humidity	35% / Water te	mperature In 1	O°C Out 22°C
Cooling capacity	kW	44.9	89.8	110.2	164.4	220.4	328.8
SHR		1	1	1	1	1	1
EER		64.1	64.1	58	56.7	58	56.7
Geometry B		Air temperat	ture 35°C - Rela	ative humidity	25% / Water te	emperature In 1	10°C Out 18°C
Cooling capacity	kW	63.7	127.4	157.1	230.3	314.2	460.6
SHR		1	1	1	1	1	1
ER		91	91	82.68	79.41	82.68	79.41
Geometry C		Air temperat	ure 35°C - Rela	ative humidity :	25% / Water te	mperature In 1	O°C Out 22°C
Cooling capacity	kW	60.6	121.2	148.9	219.8	297.8	439.6
SHR		1	1	1	1	1	1
EER		86.6	86.6	78.4	75.8	78.4	75.8
Rated air flow	m³/h	8700	17400	21200	31100	42400	62200
Total fan absorbed power	kW	0.7	1.4	1.9	2.9	3.8	5.8
Dimensions [WxHxD]	mm	1500 x1475 x1300	1500 x2950 x1300	2950 x1475 x1300	4000 x1475 x1300	2950 x2950 x1300	4000 x2950 x1300
Power supply	V/ph/Hz			400/3	+N/50		
Module number		1	2	1	1	2	2

Data declared for chilled water version. | Also available with 60 Hz power supply. | The dimensions shown refer to standard models but can be customised according to application requirements.


HTI CW units are split-type air conditioners intended for small and medium-sized Data Centers. Designed for **ceiling or wall mounting**, they are suitable for air conditioning of control centres with limited internal space or space entirely taken up by technological equipment. Thanks to the **rational layout of components and** wide range of available accessories, these units are easy to install and suitablefor different shelter configurations.

- Temperature control through heating and post-heating systems with electric heating elements
- Humidity control through dehumidification and humidification with external humidifier
- Fan speed modulation based on thermal load (constant ΔT)
- Version available with dual power supply for emergencies: 230/400V network and 24/48VDC backup supply
- Epoxy powder painted structural metalwork supplied as standard
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Instant water inlet/outlet temperature reading function (on request)

Finned pack exchanger with hydrophilic coating.

exchange coils with hydrophilic coating. This special coating - together with adequate adjustment of air through-flow speeds helps condensate collection during the

Ventilation EC

EC PLUG fans, standard on the entire range, make it possible to vary the air flow according to the thermal load. Their accurate adjustment allows an efficient use of power for ventilation and a consequent reduction of the system's PUE. Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation even in the event of microprocessor malfunctions.

Maximised Redundancy

In case of mains power + uninterruptible power supply in direct current (DUAL), the (optional) Free-Cooling mode ensures correct internal thermal conditions, even in the event of blackouts. This ensures the continuity of service of the system.

Simple and fast installation

The units can be installed, as needed, on the ceiling or on the wall. Thanks to the use of EC PLUG fans, air conditioners in the HTI CW series guarantee: optimal air distribution, efficiency, energy savings, reliability and compactness, whatever the configuration chosen.

Easier scheduled maintenance

The unit has been painstakingly designed to ensure frontal access to components. This aspect, combined with the complete extractibility of filters and Free-Cooling damper (if present), greatly facilitates routine maintenance operations.

Accurate regulation with multiple types of valves

All units in the HTI CW range have as standard regulating valves fitted with 0-10V servo motor, selectable in 2-way execution, with variable or 3-way flow system. It is also possible to mount a servo motor with spring return and pressureindependent valves on request. All these types of valves ensure the utmost adjustment accuracy while maintaining the system's hydronic balance.

Maximised energy saving with direct Free-Cooling

The units can, on request, be equipped with a direct Free-Cooling module. This system, which can also be installed inside an already operational unit, reduces the work of the chiller units in generating chilled water (partial Free-Cooling), and in a state of complete Free-Cooling can be switched off. **This** naturally has an important effect on the system's PUE.

CHILLED WATER Ceiling mount

HTICW		0073	0105	0120	0145	0310	0380
			Air temperature 27°	C – Relative humidity	40% / Water tempera	ature In 7°C Out 12°C	
Cooling capacity	kW	8.9	10.1	13.1	14.6	38.4	45.4
SHR		0.82	0.78	0.83	0.79	0.92	0.85
EER		52.88	51.03	52.11	49.35	33.25	36.78
			Air temperature 30°	C - Relative humidity	35% / Water tempera	ture In 10°C Out 15°C	
Cooling capacity	kW	7.9	8.5	11.5	12.5	36.3	41.7
SHR		0.94	0.9	0.96	0.91	1	0.95
EER		47.07	43.27	45.54	42.39	31.37	33.78
			Air temperature 35°	C - Relative humidity	30% / Water tempera	ture In 15°C Out 20°C	
Cooling capacity	kW	7.9	8.4	11.3	12.4	35.6	41.8
SHR		0.98	0.96	1	0.96	1	0.99
EER		46.69	42.89	44.76	42.02	30.84	33.82
Air flow rate	m³/h	1300	1300	1950	1950	7000	7000
Total fan absorbed power	kW	0.2	0.2	0.3	0.3	1.2	1.2
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	53	55	54	56	6	6
Dimensions [WxHxD]	mm	1050x3	58 x 936	1150x40	08 x 1026	1500x68	35 x 1096
Power supply	V/ph/Hz		230/	1/50		400/3	+N/50

Also available with 60 Hz power supply. | Units can only be installed on the ceiling for sizes 0310-0381.

CHiRef

EVAPORATIVE AIR CONDITIONER AIR-TO-AIR

AIR/AIR SYSTEMS FOR DATA CENTERS WITH ADIABATIC SYSYTEM 10-330 kW AUGUST CONTROLL SORIN SORIN COMPRESSORS COMPRESSOR

The combination of the evaporative cooling system with the air/air cross-flow exchanger of the HDB-DataBatic range extends indirect Free-Cooling for more hours during the year and more climate zones. The reduction, and in some cases cessation, of mechanical operation has two benefits: it reduces operating costs for greater annual energy efficiency (reduced PUE) and reduces deployment costs, thanks to the lower installed power. HDB units can accommodate the "cooling circuit" option, and are entirely factory assembled in a monobloc solution to facilitate installation operations.

Direct expansion or chilled water integration

If external climatic conditions cannot satisfy internal load requirements using only indirect Free-Cooling + Evaporative Cooling, the mechanical cooling system comes into play. There is thus the option of a cooling circuit with **BLDC modulating compressors specific for R410A**, **electronically controlled expansion valve and hydrophilically treated fin evaporator.** Alternatively, a chilled water coil can be installed, to be connected to an external chiller.

* Wet bulb condition for a 1 MW Data Center (Redundancy N + 1) in Amsterdam at 36°C -25%; Delivery air T 24°C; Max T of air delivery 26°C

- Possibility of managing multiple units in parallel in the same system
- High efficiency through-flow heat exchanger with epoxy surface treatment for protection against corrosion (Eurovent certification)
- Management of overpressure in the air distribution plenum (△P Control)
- Side and front access to all components, even when units are operational, to make maintenance easier and avoid system downtime situations
- Panelling developed and assembled in accordance with standard UNI 1886
- Air renewal kit with modulating dampers (Fresh air kit)
- Ultrasonic humidifier
- Kit for applications at low outdoor air temperatures (up to -40°C)

Plug type fans with EC motor

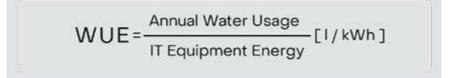
EC type ventilation on both air flows offers:

- higher efficiency at partial loads;
- reduced noise emissions:
- precise tracking of thermal load variations.
 Fan consumption, in the "hot swappable" configuration, can be displayed in real time on the machine's display

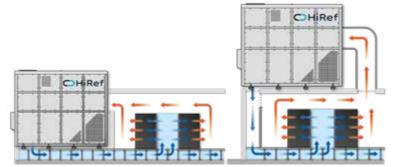
Evaporative cooling on the air flow from the outside

HDB - DataBatic units are equipped with **Evaporative Cooling technology**, based on the use of nozzles that spray water onto the air flow coming from outside. Evaporating water cools the air due to an adiabatic effect, the air then passes the cross-flow exchanger at a temperature close to the wet bulb temperature, **extending the period of time in which it is**

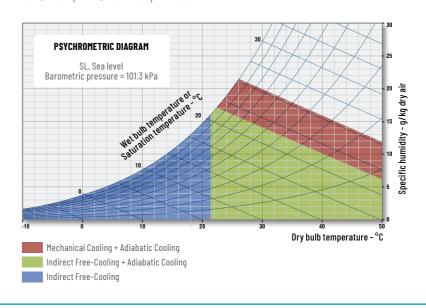
possible to exploit the Free-Cooling effect. Finally, the system is of the multistep type in respect of the air flow, in order to optimize saturation efficiency.


Indirect Air-Side Free-Cooling

Indirect Air-Side Free-cooling Indirect Free-Cooling, as opposed to direct:


- does not create contamination between the indoor air of the Data Center and outdoor air;
- blocks the entry of dust and pollutants into the Data Center without the need for additional filtering;
- there is no latent load increase.
 The result is a clear reduction in energy consumption for system management.

Water saving function and legionella-free system


Pump adjustment logic, of the electronic and modulating type, makes it possible **to optimize air saturation** and at the same time Water Usage Effectiveness (WUE) and energy consumption. The particular configuration of the hydraulic circuit and the algorithms used for its management guarantee **the necessary replenishment of water in the system** to avoid high salt concentrations **and prevent water from stagnating in the collection tank,** with the risk of the spread of legionellosis.

DESIGNED FOR INSTALLATION ON ROOF OR ON THE WALL OF THE DATA CENTER.

Example of use for a 1 MW Data Center (Redundancy N+1) in Amsterdam at 36°C - 25%; Air temp. 24°C; Max air temp. in 26°C

DataBatic		0060	0100	0200	0300			
Air temperature 36°C – Relative humidity 25% / Supply air temperature 24°C/ SHR = 1 / Outdoor air temperature 35°C – Relative humidity 30%								
Rated air flow	m³/h	15000	27000	53000	82500			
Minimum cooling capacity	kW	10	60	100	200			
Maximum cooling capacity	kW	60	100	200	330			
Dimensions [WxHxD]	mm	2750x2650x1180	4200x2650x2250	4700x3600x2250	4700x3600x3100			
Power supply	V/ph/Hz	400/3+N/50						

Data declared with chilled water or direct expansion circuit working in top up cooling mode. | Also available with 60 Hz power supply. | The dimensions shown refer to standard models without accessories and with Free-Cooling and top up cooling execution.

CHiRef

HIGH DENSITY COOLING

NRCD/NRCV

DATA CENTER

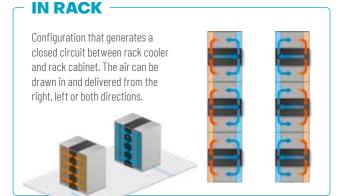
DIRECT EXPANSION AIR CONDITIONERS FOR HIGH DENSITY RACKS WITH MODULATING COMPRESSORS

NRCD > 12.4-50.1 kW

NRCV > 13.3-37.4 kW

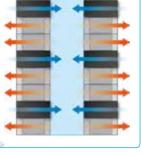
The rack coolers in the NRCD range are an ideal solution for the cooling of small-to-medium size Data Center racks where **precision control of** hygrothermal parameters is required 24/7. They are particularly suitable for **small installations** where a chiller cannot be installed or where water in the Data Center is not allowed. Internal design and component selection focus on the achievement of very high energy efficiency levels to minimise running costs of the entire system. NRCD units have an external remote condenser, which quarantees efficiency and reliability. In-rack or in-row configuration Depending on how rack cooling is done - by creating hot and cold aisles in the Data Center via compartmentalisation and localised

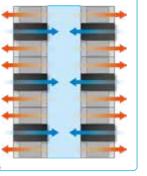
AIR CONDENSED



- Refrigerant R410A
- EC Fans
- Twin rotary and Scroll inverter compressors
- Electronic expansion valves
- Advanced programmable microprocessor control with LCD
- Humidity control through dehumidification and humidification
- Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request)
- Double power supply with automatic switch (on request)
- Constant flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (on request)
- Low temperature kits for optimal operation in the case of installation in particularly cold environments (on request)

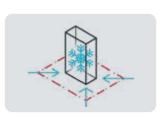
In-Rack or In-Row configuration


configurations.

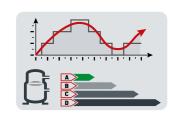

cooling - the NRCD range comes in two different

IN ROW

Configuration in which cold air is released into the "cold aisle" to each rack cabinet, and hot air from the surrounding environment is drawn in by the rack cooler. The air can be delivered from the front, right


Hot swappable fans

In order to minimize machine shutdown, a failed fan can be replaced without turning off the unit, thanks to the use of the protective basket and connectors for the power and control section. Fan replacement thus becomes a routine maintenance operation.


Safety in the server room

All models in the NRCD range feature heat exchange coils with hydrophilic coating. This special coating together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

High power density

The internal design and the special component layout allows for an evaporating coil with an extensive heat exchange surface area. The unit footprint is still small, ensuring optimal use of space in the server

Power modulation

The units adapt quickly to the Data Center's cooling requests. Thanks to the inverter-controlled compressor. performance can be modulated to up to 25% of the rated value, thus reducing consumption. This ensures continuous operation of the unit even at low loads, without switching cycles on and off.

		Air tempe	rature 30°C - F	Relative humidi	ty 35% / Outdo	or air Tempera	ature 35°C
Cooling capacity	kW	12.4	21.8	26.1	29.4	41.3	46.2
SHR		1	0.91	1	0.82	1	0.99
EER		3.9	2.89	3.46	2.55	3.59	3.18
Total absorbed power	kW	3.4	8.2	8.1	12.4	13.1	16.1
		Air tempe	mperature 35°C - Relative humidity 30% / Outdoor Air temperature 35°C				
Cooling capacity	kW	13.1	23.6	28.6	31.6	45.5	50.1
SHR		1	0.95	1	0.85	1	1
EER		4.04	3.07	3.75	2.67	3.85	3.33
Total absorbed power	kW	3.5	8.4	8.2	12.7	13.4	16.6
Rated air flow	m³/h	2700	4000	5000	4250	9000	9000
Number of circuits		1	1	1	1	1	1
Number of compressors		1	1	1	1	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	64	66	60	67	7	3
Dimensions [WxHxD]	mm	300×20	00×1200	600 x2000 x1200	300 x2000 x1200	600×20	00 x 1200
Power supply	V/ph/Hz	230/1/50	50 400/3+N/50				

NRCV		U14U	U2 4 U	0330
		Air temperature 30°C - R	elative humidity 35% / Outd	oor air Temperature 35°C
Cooling capacity	kW	13.3	24.6	34.6
SHR		1	1	0.88
EER		4.06	3.17	3.1
Total absorbed power	kW	4.1	9.1	13.1
		Air temperature 35°C - R	delative humidity 30% / Outd	oor Air temperature 35°C
Cooling capacity	kW	14.5	26.9	37.4
SHR		1	1	0.91
EER		4.36	3.36	3.3
Total absorbed power	kW	4.1	9.3	13.3
Rated air flow	m³/h	3100	5300	5300
Rated air flow rate outdoor unit	m ³ /h	6400	9300	16300
Number of circuits		1	1	1
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	62		63
Lp @ Nominal rpm ; dist.= 10 m Q=2	dB(A)	46	46	46
Dimensions indoor unit [WxHxD]	mm	300x20	00x1200	300x2000x1200
Dimensions outdoor unit [WxHxD]	mm	1250x460x882	1565x605x1275	1965x950x1322
Power supply indoor unit	V/ph/Hz		230/1/50	
Power supply outdoor unit	V/ph/Hz	230/1/50	400/3+N/50	400/3+N/50

Total absorbed power relating to indoor unit and motocondensing unit. | Also available with 60 Hz power supply.

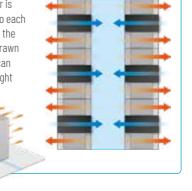
Ventilation EC

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΛP and ΛT . Their accurate adjustment allows an efficient use of power for ventilation and a consequent **reduction of** the system's PUE. Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan oneration even in the event of microprocessor malfunctions.

Sliding control panel

For 300 mm wide structures, the electrical panel is designed to take up as little space as possible without interfering with air distribution over the whole working height of the unit. A

"sliding drawer" structure has been used, making access possible during commissioning and extraordinary maintenance operations. This configuration also prevents tangling of the wiring.


HRCC units are chilled water cooler racks. They offer an ideal solution for the cooling of Data Center racks where **precision control of hygrothermal parameters is required 24/7**. They are particularly suitable for integration into chilled water systems with Free-Cooling chillers, given the possibility of making these air conditioners work even with higher water temperatures than the usual 7/12°C or 10/15°C values. The internal design and the choice of components are aimed at obtaining high levels of energy efficiency and guaranteeing **service continuity**, the second being a key requirement in this type of application with **high/** very high power density.

In-Rack or In-Row configuration

Depending on how rack cooling is done - by creating hot and cold aisles in the Data Center or via compartmentalisation and localised cooling - the HRCC range comes in two different configurations: On request Configuration that generates a closed circuit between rack cooler and rack cabinet. The air can be drawn in and delivered from the right, left or both directions.

IN RACK Configuration that generates a closed circuit between rack cooler and rack cabinet. The air can be drawn in and delivered from the right, left or both directions.

Configuration in which cold air is released into the "cold aisle" to each rack cabinet, and hot air from the surrounding environment is drawn in by the rack cooler. The air can be delivered from the front, right and left.

Advanced programmable

· Humidity control through

display

microprocessor control with LCD

dehumidification and humidification

• Air filter class G3 supplied as standard Air Filters G4, M5, F7 (on request) • Double power supply with automatic

• Fan speed modulation based on

• Constant flow (airflow control) or constant available overpressure (ΔP control) ventilation modulation (on

• Instant reading of water flow rate,

cooling capacity (on request)

water inlet and outlet temperatures, or

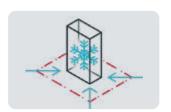
thermal load (constant ΔT)

switch (on request)

request)

Ventilation EC

EC PLUG fans, standard throughout the range, are adjustable using different logics: flow rate, overpressure, constant ΔP and ΔT Their accurate adjustment allows an efficient use of power for ventilation and a consequent **reduction of** the system's PUE. Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function allows for fan operation even in the event of microprocessor malfunctions.


Hot swappable fans

In order to minimize machine shutdown, a failed fan can be replaced without turning off the unit, thanks to the use of the protective basket and connectors for the power and control section. Fan replacement thus becomes a routine maintenance operation.

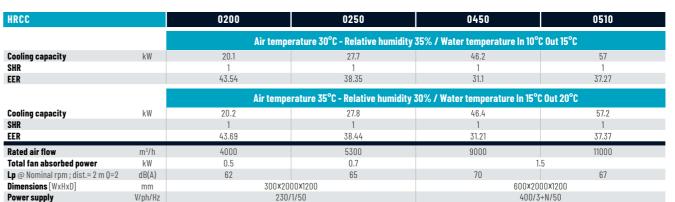
Safety in the server room

All models in the range feature heat exchange coils with hydrophilic coating. This special coating together with adequate adjustment of air through-flow speeds - helps condensate collection during the dehumidification process, preventing any dripping on the inside and outside of the unit.

High power density

The internal design and the special component layout allows for an evaporating coil with an extensive heat exchange surface area. The unit footprint is still small, ensuring optimal use of space in the server room.

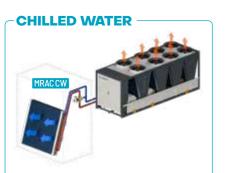
CHILLED WATER



Sliding control panel

For 300 mm wide structures, the electrical panel is designed to take up as little space as possible without interfering with air distribution over the whole working height of the unit. $\boldsymbol{\mathsf{A}}$ "sliding drawer" structure has been

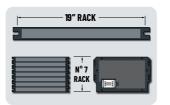
used, making access possible during commissioning and extraordinary maintenance operations. This configuration also prevents tangling of the wiring.



Also available with 60 Hz power supply.

The units in the MRAC family offer an ideal solution for cooling 19" racks, which require **precise internal** temperature control and 24/7 operation. In split execution, with R410A refrigerant external condensing unit, the range extends from 3.6 to 7.9 kW. The CW version, with chilled water, reaches 4.5 kW. The MRAC unit is controlled by a **dedicated software**, developed within HiRef, allowing a LAN connection for **up to 8 units** and interfacing with an automatic door-opening system in the event of an alarm.

- Coil with highly efficient hydrophilic fin and aluminum frame
- A version is available for low outdoor air temperatures
- Compressor with brushless inverter
- Condensate drain pan made from
- Electrical and rapid control connections
- Completely insulated panelling
- Air filter type G3



- technology available for 7 kW version
- stainless steel AISI 430

- Refrigerant R410A

Compactness

MRAC has been designed to be hidden inside the rack cabinet and take up as little space as possible. Installable in any rack cabinet with 19" racks, it occupies the height of just 7 racks, taking up very little space in the Data Center.

Ventilation EC

EC PLUG fans, standard on the entire range, make it possible to vary the air flow according to the thermal load. Their accurate adjustment allows an efficient use of power for ventilation and a consequent reduction of the system's PUE. Extended range speed adjustment is carried out via Modbus protocol. The "emergency speed" function enables the fan to move even if the microprocessor is switched off.

Maximum MRAC redundancy with the version having two external motocondensing units

The MRAC unit with dual external motocondensing unit is available on request. This solution provides redundancy and ensures continuity of service even in the event of failure of one of the two units.

MRAC CW		0035	0070		
		Air temperature 30°C - Relative humidity 35% / Water temperature In 10°C Out 15°C			
Cooling capacity	kW	3.4	4.5		
SHR		1	1		
EER		17	22.5		
		Air temperature 35°C - Relative humidity 30% / Water temperature In 15°C Out 20°C			
Cooling capacity	kW	3.5	4.5		
SHR		1	1		
EER		17.5	22.5		
Air flow rate	m³/h	915	915		
Total fan absorbed power	kW	0.2	0.2		
Lp @ Nominal rpm ; dist.= 2 m Q=2	dB(A)	61			
Dimensions [WxHxD]	mm	485 x 300 x 600			
Power supply	V/ph/Hz	230/1/50			

Also available with 60 Hz power supply.

MRAC DX		0035	035B	0070	070 (INVERTER)	
		Air temperature	emperature 35°C			
Cooling capacity	kW	3.7	3.2	4	8.8	
SHR		1	1	1	0.83	
EER		3.58	3.18	3.73	2.73	
Total absorbed power	kW	1.3	1.4	1.5	4	
		Air temperature 35°C - Relative humidity 30% / Outdoor Air temperature 35°C				
Cooling capacity	kW	4	3.6	4.7	9.4	
SHR		1	1	1	0.86	
EER		3.78	3.43	4.22	2.86	
Total absorbed power	kW	1.3	1.4	1.5	4.1	
Rated air flow	m³/h	915	1330	1330	1330	
Rated air flow rate outdoor unit	m³/h	1600	1600	1600	5100	
Number of circuits			1	2	1	
Number of compressors inverter					1	
Number of compressors on/off		1	1	2		
Lp @ Nominal rpm; dist.= 2 m Q=2 indoor unit	dB(A)	62		66		
Lp @ Nominal rpm; dist.= 10 m Q=2	dB(A)		34		46	
Dimensions indoor unit [WxHxD]	mm	485 x 300 x 600				
Dimensions outdoor unit [WxHxD]	mm	776x540x320 1305x648x495				
Power supply indoor unit	V/ph/Hz	230/1/50				
Power supply outdoor unit	V/ph/Hz	230/1/50				

Performance data for size 035B relating to operation with only one motocondensing unit. | Total absorbed power relating to indoor unit and motocondensing unit. | Also available with 60 Hz power supply.

REMOTE CONDENSERS

The HiRef remote condensers are outdoor units that can be combined with air-condensed indoor units such as cabinets in the A-D series and NRCD rackcoolers. HiRef offers a wide range of condensers, suitable for working with refrigerants R410A, R134a, R454B, R407C. The condensers, used with dual-circuit units, are available with a single cooling circuit for maximum reliability and redundancy of the

system or with a double cooling circuit, to reduce installation spaces and costs. The models have an aluminum alloy and galvanized sheet frame, ideal for ensuring high corrosion resistance, protection of copper pipes and solidity. The galvanized sheet external panels have an anticorrosion and anti-UV radiation polyester

- Power supply 230V single phase or 400V three phase
- Power supply from HiRef indoor unit (standard) or stand alone (on request)

Silent operation

The remote condensers are also available in **low** noise emission versions, ideal in areas where a high level of acoustic comfort must be

Finned coil

The finned-coil heat exchangers are made with copper tubes and, depending on the model, wavy or corrugated aluminium fins. The standard spacing between the fins is 1.8 - 2 - 2.1 mm, depending on the model, offering high heat exchange efficiency without affecting the ease of routine cleaning.

Customization

The units can be customized on request to meet the customer's design needs. Among the various

- · special treatment for the finned-coil exchanger, including epoxy treatment, offering good resistance to corrosive environments, or copper fins for installation in marine environments;
- increased fin spacing to reduce soiling and facilitate cleaning in sandy environments:
- special ductable **condensers** for installation in closed places.

Versatility

As an alternative to vertical installation with horizontal air flow, as standard, horizontal installation with upward air flow is possible, with the use of a leg kit that can be ordered separately.

Depending on the model, the units mount axial fans with diameters of 350 - 450 - 500 - 630 mm. The fans, with 4 or 6 poles, can be adjusted using a speed regulator from the indoor unit or mounted on the machine. The units are also available with high efficiency EC fans for low operating consumption and reliable control of the condensing temperature thanks to electronic speed regulation.

DRY COOLER

HiRef Dry Coolers are outdoor units that can be combined with water-condensed indoor units such as cabinets in the W - F - K series. HiRef offers a wide range of Dry Coolers suitable for working with a water-glycol mixture up to 60%. They are made with frame in aluminium alloy and galvanized sheet steel that ensures corrosion resistance, copper pipe protection and solidity. The external panels are made of galvanized sheet metal finished with corrosion- and UV-resistant

- Power supply 230V single phase or 400V three phase
- Power supply from HiRef indoor unit (standard) or stand alone (on request)

Finned coil

Versatility

As an alternative to vertical

installation with horizontal air

flow, as standard, horizontal

installation with upward air flow

is possible, with the use of a leg

kit that can be ordered separately.

The finned-coil heat exchangers are made with copper tubes and, depending on the model, wavy or corrugated aluminium fins. The standard spacing between the fins is 2 mm, offering high heat exchange

efficiency without affecting the ease of routine cleaning.

The units can be customized on request to meet the customer's design needs. Among the various

· special treatment for the finned-coil exchanger, including epoxy treatment, offering good resistance to corrosive environments, or copper fins for installation in marine environments;

increased fin spacing to reduce soiling and facilitate cleaning in sandy environments.

Silent operation

The Dry Coolers are also available in low noise emission versions, ideal in areas where a high level of acoustic comfort must be maintained.

Efficiency

Depending on the model, the units mount axial fans with diameters of 350 - 500 - 630 - 800 mm. The fans, with 6 or 8 poles, can be adjusted using a speed regulator from the indoor unit or mounted on the machine. The units are also available with high efficiency EC fans for low operating consumption and reliable control of the condensing temperature thanks to electronic speed regulation.

HiRef S.p.A. Viale Spagna, 31/33 - 35020 Tribano (PD) Italy Tel. +39 049 9588511 - Fax +39 049 9588522 - info@hiref.it

HiRef S.p.A. reserves the right, at any time, to introduce any necessary changes and improvements to its products without prior notice. Reproduction, even partial, of this catalogue is forbidden without a written permission from HiRef S.p.A.

© Copyright HiRef S.p.A. 2023