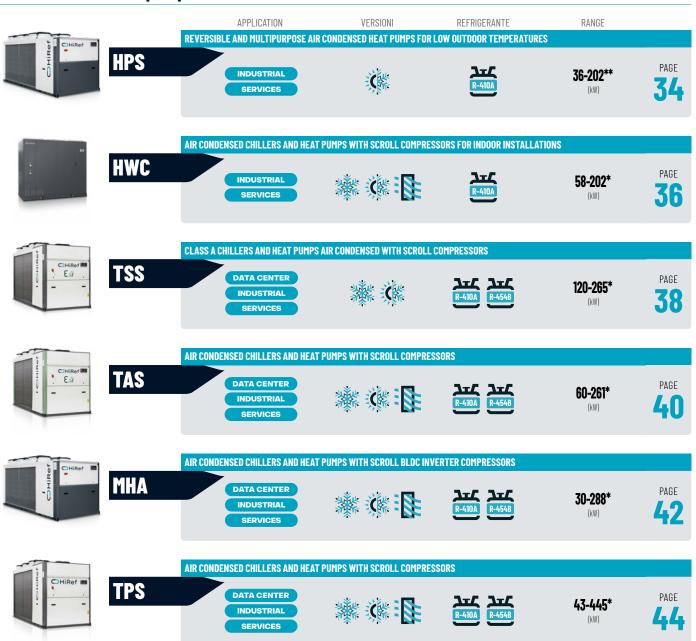




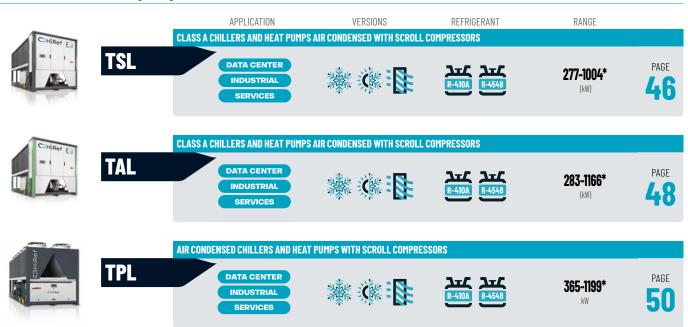
CHILLERS AND HEAT PUMPS

AIR/WATER

Liquid chillers


Technical data are subject to change without notice. Do not use these data in the design stage.

**** 200 m³/h corresponding to 1.4 MW with $\Delta T = 6$ K


AIR/WATER

Reversible heat pumps

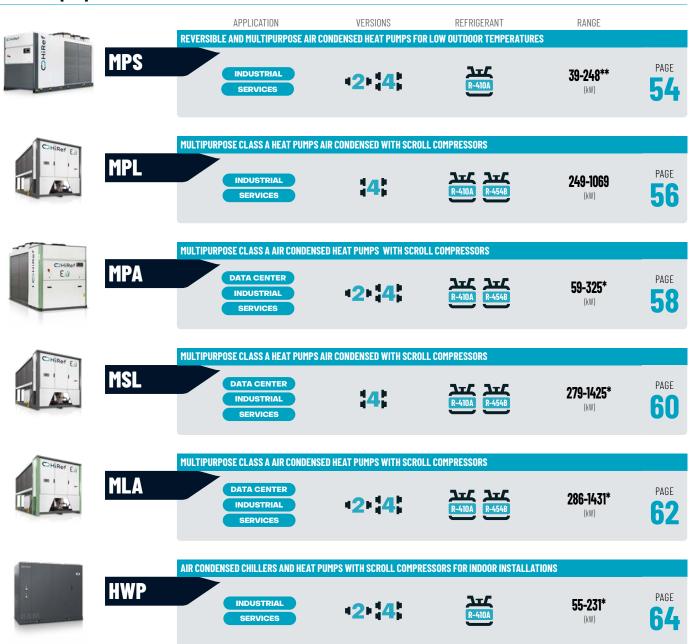
AIR/WATER

Reversible heat pumps

 * User side: In/Out water T 16/10 °C, source side: outdoor air 35 °C (air/water), In/Out water T 30/35 °C (water/water)

 ** User side: In/Out water T 40/45 °C, source side: outdoor air 7 °C

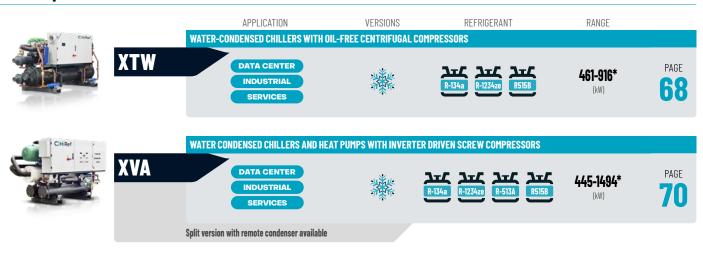
*** User side: In/Out water T 70/80 $^{\circ}$ C, source side: In/Out water T 45/40 $^{\circ}$ C

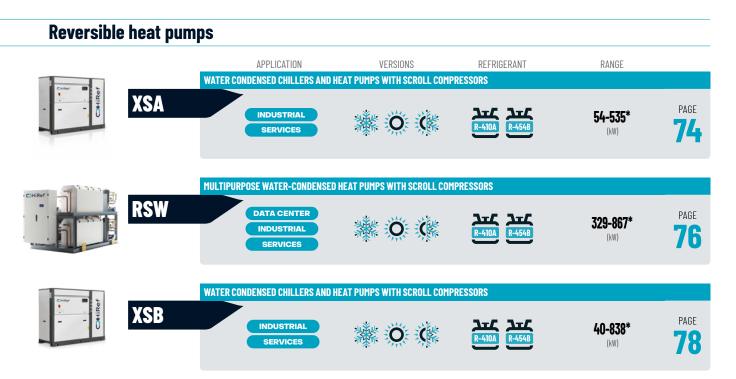

**** 200 m³/h corresponding to 1.4 MW with ΔT = 6 K

Technical data are subject to change without notice. Do not use these data in the design stage.

AIR/WATER

Multipurpose





CHiRef

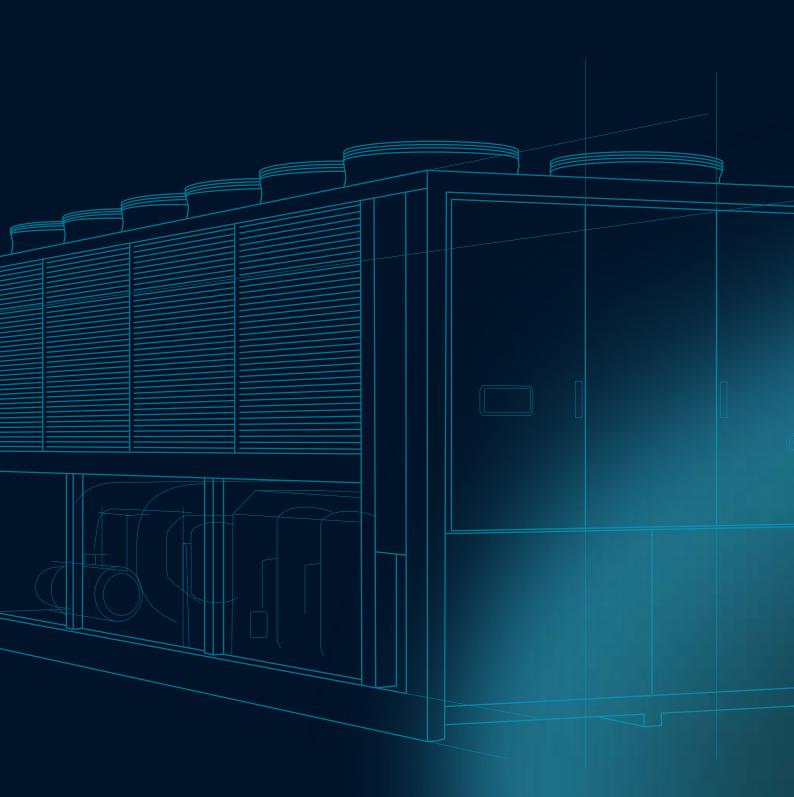
WATER/WATER

Liquid chillers

* User side: In/Out water T 16/10 °C, source side: outdoor air 35 °C (air/water), In/Out water T 30/35 °C (water/water)

 ** User side: In/Out water T 40/45 °C, source side: outdoor air 7 °C

 *** User side: In/Out water T 70/80 $^{\circ}$ C, source side: In/Out water T 45/40 $^{\circ}$ C


**** 200 m³/h corresponding to 1.4 MW with ΔT = 6 K

Technical data are subject to change without notice. Do not use these data in the design stage.

WATER/WATER

Multipurpose

CATALOGUE CHILLERS AND HEAT PUMPS

CHiRef

www.hiref.it

TECNOLOGIES

ADVISORS IN THE FIELD OF ADVANCED Technologies and customized solutions For It and industrial cooling

At HiRef, we love a challenge and constantly try to exceed limits and standards.

Our Research & Development hub is the innovative core of the company: here, we study new ideas and test innovative approaches to the development and application of technologies - so that they are at the forefront of economic sustainability for data centres, for telecommunications and for the commercial and services sector, without ever compromising on environment-friendliness.

In synergy with our in-house electrical, mechanical and

software design department, we design full-custom air conditioning systems, which are customizable and adaptable to even the most critical environments, to be able to respond to any specific needs.

We are guided by high quality engineering and the constant optimization of system efficiency, to mitigate its environmental impact.

We are the acknowledged first adopters and flexible implementers of new technologies.

At HiRef, customer relations and tailor-made design are key to our success.

Shell and tube heat exchanger

Some chiller and heat pump product ranges are supplied with a shell and tube exchanger. The high reliability and operating stability of this type of heat exchanger makes it particularly suitable for industrial and high-tech applications. **The generously sized volumes typical of shell and tube exchangers ensure stable unit operation and make the exchanger less sensitive to**

thermal stress.

Where present, the dual-pass exchanger configuration allows both cooling and heat pump operation to be optimised.

According to the range considered, it is possible to have either **dry expansion tube exchangers or flooded shell and tube exchangers with spray technology**.

A2L Ready - Low environmental impact refrigerants

Some ranges of liquid chillers, in addition to safety class A1 refrigerants R410A and R134a, can also be supplied with class A2L (slightly flammable) refrigerants with low environmental impact R454B and R1234ze. HiRef makes these product ranges available also in the "A2L Ready" version: **filled with a safety class A1 refrigerant, they are factory-ready and equipped** with all the necessary safety sensors to allow, if the customer requests it, fast switching to A2L at a later stage.

Fast Restart and dedicated microprocessor control

With the FAST Restart option the unit is equipped with separate dedicated low voltage (24 V) or 230 V power supply for microprocessor control separately from the main users' power supply. In this way, the control can be powered by a source external to the UPS or by a small source internal to the UPS (optional), **to**

ensure power supply continuity for the unit's microprocessor. With the FAST restart option the unit

can reach 100% cooling capacity in maximum 120 s after power is restored, **ensuring maximised system cooling availability in a short time**.

Free-Cooling

The Free-Cooling technology allows the unit to supply the required cooling capacity without any need for the compressors to be running. **The resulting advantages in terms of lower seasonal power absorption can reach 30%.**

High efficiency

The combined choice and weighted sizing of high-tech internal components **allows the units to operate at high levels of efficiency**.

AIR/WATER AND WATER/WATER CHILLERS TOP PERFORMANCE IN ALL CONDITIONS

HiRef's air/water and water/ water liquid chillers meet the heating power requirements in the industrial, commercial, services and Data Centre sectors.

Designed for top performance,

they can operate in Free-Cooling mode when outdoor conditions allow it, rationalising the use of the plant's electricity with lower operating costs and reduced environmental impact. Our painstakingly executed designs ensure correct sizing according to the specific requests of our customers, so that **each unit can be perfectly integrated into an existing system (retrofitting) or installed in new systems, without wasting any power**.

Fans

In units with an air source, the fan is a key component for trouble-free operation in all operating conditions and at the same time - for unit energy absorption calculations. An efficient fan and motor play a significant role in reducing **consumption**. All the fans used in the Hiref units are built according to the most innovative technologies; this is true both for versions with traditional motors and for versions with EC motors, **actively contributing to energy saving**.

Adiabatic Cooling

A set of panels equipped with a system of nozzles, located upstream of the finned pack heat exchangers, humidifies the incoming air, decreasing its temperature. **Consequently, an increase in the efficiency of the thermodynamic cycle and in the cooling capacity is obtained**.

Control and supervision

All the units are equipped with **proprietary software** modelled on the specific features of the range, to meet customer needs whatever the application requirements. An optional feature is also available to connect several independent units together and control them as if they were a single machine, with freely selectable logics for switching individual units on or off. This **ensures maximum efficiency and, at the same time, maximum reliability within the plant**.

Each unit integrates perfectly with the most popular supervision systems available commercially.

Plate heat exchanger

The plate heat exchanger is characterised by high power density values: its geometry makes an efficient heat exchange possible, combined with minimal footprint. The use of this type of exchanger on some chiller and heat pump ranges **allows for compact footprint units, with optimised internal spaces**.

The applied cross-channel technology also makes it possible to **operate efficiently even at partial loads**, without any impact on pressure drops at user end and therefore keeping pumping costs at reasonable levels.

Inverter driven compressors

Compressors with inverter electronics are able to vary their rotation speed and therefore provide variable cooling and heating capacity based on the actual system demand. Compressors with inverters are therefore suitable for applications with highly variable power demand over time and/ or with reduced thermal inertia. The possibility of modulating down to low RPMs allows units with inverter compressors to also reach higher seasonal efficiencies compared to units with scroll compressors only.

Super low noise set-up

When low noise levels are required, it is possible to choose between two unit soundproofing configurations: the Low noise version and the higher-performance Super Low noise version. The latter, designed with panelling around not just the compressors but also the entire refrigeration circuit and hydraulic components (pumps, valves, etc.), reduces any noise caused by valves, pipes and pumps. Combined with reduced ventilation speed, the Super Low Noise version allows the lowest noise levels on the market to be achieved.

www.hiref.it

SAFETY SENSORS AND COMPONENTS

FOR AIR-CONDITIONING UNITS OPERATING USING MILDLY FLAMMABLE CLASS A2L REFRIGERANT GASES

HiRef, in compliance with the European "**F-Gas**" regulation which imposes gradual but increasingly stringent restrictions to the use of fluorinated greenhouse gases (79% reduction of tonnes of equivalent CO_2 by 2030). HiRef has been **promoting the development and use of the new A2L refrigerant gases**, which have a very low environmental impact, from the outset, with the aim of accelerating the transition to a more environmentally friendly class of refrigerants at a global level and ultimately promoting the decarbonisation process.

Safety

ASHRAE A2L class refrigerants are mildly flammable. This peculiarity requires certain precautions in terms of sensors and components in the air conditioning unit, **to prevent - through adequate designing - the risk of igniting fires**. All HiRef chillers and heat pumps using this class of gases are equipped with an advanced system of sensors and components capable of detecting and managing any gas leakage: this guarantees normal operation of the unit in complete safety.

Compressors and components

Compressors and components are specially designed and created to **work with A2L fluids**.

Refrigerant leak sensor

A refrigerant leak sensor is installed inside each dependent section of the control panel and inside each separate compartment that contains one or more compressors **to detect any gas leaks**.

Pressure switch and fan of the compressor compartment and of the power control panel compartment

A ventilation system and a pressure switch are installed in the control panel compartment, to ensure **constant overpressure conditions thanks to air intake from outside the machine**.

Alarm control and management systems

- A centralised control system constantly monitors the values detected by the sensors and pressure switches.
- Deviations from the safety levels are signalled as warnings if they fall within a first safety threshold (low alarm level).

If the second safety threshold is also exceeded, the alarm is classified as "severe" and the control system sends a **shutdown command to the components of the refrigeration circuit**.

INDUSTRIAL

PCC is the HiRef range of air condensed liquid chillers designed for process applications that require **precision temperature control of the chilled water delivered to the system**. The PCC units use Scroll type compressors and braze welded plate evaporators; the hydraulic circuit can be equipped with an open or closed circuit tank, it can be supplemented with high head pumps and with a by-pass valve to meet the requirements of several industrial applications.

Maximum efficiency at partial loads

Multi-Scroll solutions, electronically controlled expansion valves, generously-sized plate heat exchangers, software-managed integrated control of fans and circulation pumps: these key characteristics make the PCC range suitable for numerous industrial applications that require **precise control of delivered power and chilled water temperature.**

Solution designed for process applications

The PCC range also allows for the installation, directly on-board the machine, of dual impeller pumps, the special configuration of which ensures the achievement of the **highest heads to meet a broad range of process requirements.** Pumping modules with pressures up to 5 bar are available.

• Refrigerant R410A

- Electronically controlled expansion valve supplied as standard
- Up to 5 bar pump set
- Dual day/night noise emission set-point
- Optional EC electronic switching fans
- Programmable on-board microprocessor control with dedicated software
- Equipment for production of water and glycol mixtures available

CATALOGUE CHILLERS AND HEAT PUMPS

Accurate regulation of the outlet temperature

For applications where accurate control of the cooling capacity delivered is required, the use of a water bypass valve **ensures fine adjustment of the temperature of the chilled liquid flowing out of the unit**.

Perfect adaptability to any type of process

A water tank can be installed inside all units of the PCC range. The tanks come in two configurations:

- with an open circuit that allows for continuous topping up of water to make up for losses in the utility circuit.
- with a traditional closed circuit with expansion tank and safety valve.

Easy installation and maintenance

The choice and layout of components make for a constructively straightforward unit, **with installation and maintenance tasks made easier.**

PCC		010	015	020	025	030	035	040	045	050	055	062	072	082	092	102	120	140	160	180	210
				Coolin	g: User	r water	value	s 12/7°	°C, 35°	C outsi	de air,	40% l	J.R.								
Cooling capacity	kW	8.8	13	14.6	18.8	22	26	28.9	31.9	35.9	39.1	43.1	48.9	56.2	63.7	74.3	81.6	101.1	111.9	125.2	141.3
Total absorbed power	kW	2.6	4.1	4.8	6.4	6.8	8	9.1	10.3	12.1	13.9	13.2	15.9	18.1	20.8	23.7	27	32.6	37.2	42.2	48.6
EER		3.37	3.14	3.04	2.95	3.24	3.25	3.16	3.09	2.96	2.81	3.28	3.08	3.11	3.07	3.14	3.02	3.1	3	2.96	2.91
SEPR		5.71	5.51	5.6	5.05	5.84	6	5.89	5.56	5.37	5.05	6.95	6.59	5.57	6.35	6.27	6.04	5.39	5.29	5.12	5.01
Sound power	dB(A)	69	74	73	73	75	76	76	76	77	80	74	75	83	77	78	82	79	80	80	81
Sound power [Low noise]	dB(A)	66	71	70	70	72	73	73	73	74	77	71	72	80	74	75	79	76	77	77	78
Number of circuits		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2
Number of compressors		1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	4	4	4	4
Dimensions [LxHxD]	mm	1	500 x 13	70 x 650)			1661 x 14	68 x 914			2	2090 x 17	30 x 117)	2440 x 17	730 x 1170	3	3530 x 17	30 x 114)

www.hiref.it

SE

DATA CENTER

SERVICES

CHILLERS WITH REMOTE CONDENSER WITH SCROLL COMPRESSORS

TSE is the HiRef range of liquid chillers with remote condenser and Scroll compressors. These motoevaporating units are available with different refrigerating set-ups (Efficiency Packs), numerous power ratings and two different noise emission set-ups, making them **particularly versatile for a number of system engineering applications**. Sizing, the choice of individual components and control of auxiliary units (circulation pumps, remote condenser fans) all aim to **reduce energy consumption and increase energy savings throughout the system**. The configurations available for the refrigeration circuit are:

EFFICIENCY PACK 1: Dual compressor on dual circuit for high system redundancy. For units from 48 to 177 kW.

EFFICIENCY PACK 2: Dual compressor (tandem) on single circuit for greater efficiency at partial loads. For units from 48 to 177 kW.

EFFICIENCY PACK 4: Four compressors (dual tandem) on dual circuit, for a redundant system that is also efficient with low loads. For units from 146 to 481 kW.

Sizes above 481 kW are always of the dual refrigerating circuit type with five or six Scroll compressors.

- Refrigerant R410A: Available on request with R454B
- Electronically controlled expansion valve supplied as standard
- Optional Vic-Taulic hydraulic couplings
- Remote condenser fan management for air flow modulation
- External pump control according to constant T or constant ∆T logic
- Partial heat recovery (desuperheater)(optional)
- Oil recovery kit for refrigeration lines up to 50 m long

CHiRef

CATALOGUE CHILLERS AND HEAT PUMPS

Maximum efficiency at partial loads

The TSE range features a multi-Scroll solution also on single circuits, electronically controlled expansion valves and the option of managing the circulation pumps and remote condenser fans via onboard software: all these features help **achieve high standards of energy efficiency, particularly at partial loads.**

Reduced footprint

The carefully arranged component layout, together with compact plate heat exchangers and the Scroll compressors, gives the machine a **compact configuration and makes it adaptable to any installation area**. Sizes with **EFFICIENCY PACK 1 and 2** also have a width compatible with that of most commercially available doors, **making transport and installation easier**.

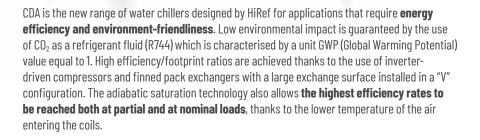
Efficiency and reliability in line with system requirements

The main strength of the TSE range is given by its numerous configurations available for the refrigeration circuit, which, depending on the size of the machine and system construction requirements (redundancy and/or efficiency at reduced load), can be available in the form of different **EFFICIENCY** PACKS. The management of the oil return through integrated software logic also helps to increase the reliability of the compressors - and consequently - of the unit.

Attention to detail and to low noise requirements

Scroll compressors, which are the main noise source in the unit, are fitted on rubber feet; these dampen vibration and therefore **attenuate the noise transmitted to the various system parts.** On request, the compressor enclosure can be lined with special sound absorbing material and the compressors can be enclosed in special insulating sheaths **to reduce airborne noise emission.**

TSE		041 CS	042 CS	051 CS	052 CS	061 CS	062 CS	071 CS	072 CS	081 CS	082 CS	091 CS	092 CS
			User w	vater value	s 12/7°C, c	ondensing	temperatu	re 50°C					
Cooling capacity	kW	43.1	43.1	50.5	50.3	57.9	57.9	65.2	65.1	75.3	75.4	84.5	84.3
Total absorbed power	kW	13.2	13.2	15.5	15.5	17.5	17.5	19.5	19.5	22.4	22.4	25.2	25.2
EER		3.26	3.25	3.25	3.24	3.32	3.32	3.34	3.33	3.37	3.37	3.35	3.34
Sound power	dB(A)	76	76	78	78	78	78	79	79	79	79	81	81
Sound power [Low noise]	dB(A)	72	72	74	74	74	74	75	75	75	75	77	77
Weight	kg	372	362	432	422	442	432	452	442	472	462	512	492
Dimensions [LxHxD]	mm						1174×15	94x772					
TSF		111 C.S	112 ՐՏ	131.05	132 CS	141 09	142 CS	144 CS	161 CS	162 CS	164 CS	181 CS	182 05


TSE		111 CS	112 CS	131 CS	132 CS	141 CS	142 CS	144 CS	161 CS	162 CS	164 CS	181 CS	182 CS
			User wa	ter values	: 12/7°C, c	ondensing	temperatu	re 50°C					
Cooling capacity	kW	100.2	100.1	114.4	114.1	127.3	127.3	131.2	139.7	139.4	149.8	175.1	175.1
Total absorbed power	kW	29.8	29.8	34.6	34.6	37.8	37.8	39	41.2	41.2	44.8	53.1	53.1
EER		3.36	3.36	3.31	3.3	3.37	3.37	3.37	3.39	3.39	3.34	3.3	3.3
Sound power	dB(A)	84	84	85	85	85	85	82	85	85	82	90	90
Sound power [Low noise]	dB(A)	80	80	81	81	81	81	78	81	81	78	86	86
Weight	kg	563	553	573	563	633	618	723	673	653	743	713	693
Dimensions [LxHxD]	mm			1644x159	}4x772			2374 ×1854 ×877	1644x15	94x772	2374 x1854 x877	1644x	1594×772
TSE		184 CS	204 CS	214	CS 2	44 CS	284 CS	314 CS	344 C	S 374	CS 4	24 CS	484 CS
			User wa	ter values	: 12/7°C, c	ondensing	temperatu	re 50°C					
Cooling capacity	kW	169.8	185.3	199	.2	228	249.6	272	303.1	33	8.8	384.4	433.2
Total absorbed power	kW	50.4	55	59.	7	68.8	75.5	82.2	94	10	5.7	118.9	132.1
EER		3.37	3.37	3.3	3	3.31	3.31	3.31	3.23	3.	21	3.23	3.28
Sound power	dB(A)	84	85	86	3	88	88	88	91	9	3	94	95
Sound power [Low noise]	dB(A)	80	81	82	2	84	84	84	87	8	9	90	91
Weight	kg	853	873	92	3	983	1093	1253	1293	13	33	1413	1520
Dimensions [LxHxD]	mm						2374x18	354x877					

V

FAST RESTAR

DATA CENTER INDUSTRIAL SERVICES CHILLERS WITH NATURAL REFRIGERANT R744 (CO2) AIR COOLED AND WITH MODULATING COMPRESSORS - COOLING ONLY VERSION 96-492 kW VIENE VIENE VIENE VIENE

• EC fans as standard (as AC option)

CLASS A

- Aisi 316L stainless steel
 refrigeration circuit
- Low pressure side PS: 85 bar

Higher efficiency potential

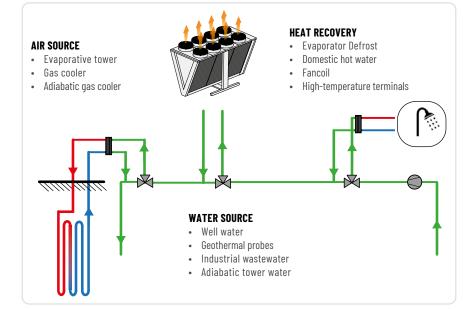
Ejector technology (available as an option) makes it possible to flood the evaporator and **increase the unit's performance by 8%.**

Natural refrigerant

The refrigerant R744 is a natural gas, largely available in nature and without limitations of use. In addition, it is inert, non-toxic and, more importantly, non-flammable, all of which contributes **to reducing costs and the difficulties associated with installing the systems safely**. This refrigerant can be widely used in the field of commercial refrigeration; among other things, it offers good thermodynamic performance due to its inherently favourable

chemical and physical properties.

Modular and efficient


CHiRef

The configuration with very deep modular 'V' coils provides an extensive heat exchange surface area and therefore **excellent thermal efficiency levels in relation to the unit footprint.** Another special feature is the material of the coil tubes (alloy of copper and steel) which ensures mechanical strength to high pressures (up to 130 bar) and heat transfer coefficients greater than those of stainless steel-only tubes. By connecting in parallel each CDA unit via special kits (on request) a modular configuration can be obtained capable of meeting high cooling capacity requirements and guaranteeing **high redundancy**, with full system management via the on-board electronics.

Maximum efficiency at partial loads

The choice of adopting a single refrigerant circuit configuration with an inverter-driven compressor, the use of EC electronic switching fans (supplied as standard) and management of the variable flow rate through circulation pumps: **these main features maximize the efficiency of the CDA range at partial loads.**

CATALOGUE CHILLERS AND HEAT PUMPS

Very high temperature and multi-source heat recovery

CO₂ in the transcritical system allows several exchangers to be placed in series on the dissipation side. A typical configuration includes:

- a partial or total heat recovery exchanger that recovers the dissipated heat and produces instantaneous hot water at very high temperatures (over 90°C), without altering the operation of the unit. A typical application is the production of instantaneous hot water;
- an exchanger with air dissipation;
- **an exchanger with dissipation in water using well water or geothermal probes,** to further cool the CO₂ and guarantee greater efficiency and cooling performance during the most critical periods of operation.

The compressors and pumping kit are housed in a box lined internally with soundproofing material.

Adiabatic saturation system

The adiabatic humidification system consists of a set of humidification panels placed in front of the finned pack heat exchangers and kept evenly wet. With this system the hot air flows through the wet panels, comes into contact with the contained water and transforms it into water vapour: the outgoing air is therefore colder and passes through the finned pack heat exchangers at a lower temperature, **increasing the efficiency of the thermodynamic cycle and the refrigeration capacity**.Taking average climatic conditions as a reference, energy savings on an annual basis exceed 35% compared to a traditional chiller of the same size,

CDA		095CS	190CS	285CS
		Cooling: User water values 12/	/7°C, 35°C outside air, 40% U.R.	
Cooling capacity	kW	96	192	288
Total absorbed power	kW	29	58	87
EER		3.33	3.33	3.33
		User water values 12/7°C,	10/80°C source water side	
Cooling capacity	kW	131	262	393
Thermal power	kW	164	328	492
Total absorbed power	kW	33.5	67	100.5
COP		8.81	8.81	8.81
Sound power	dB(A)	86	89	91
Dimensions [LxHxD]	mm	2255×2655×1600	2255×2655×3200	2255×2655×4800

SERVICES

96-492 kW

DATA CENTER INDUSTRIAL

CHILLERS WITH NATURAL REFRIGERANT R744 (CO₂) AIR COOLED AND WITH MODULATING COMPRESSORS - FREE-COOLING VERSION

CDA is the new range of water chillers that combines **energy efficiency and environmentfriendliness**. Low environmental impact is guaranteed by the use of CO_2 as a refrigerant fluid (R744) which is characterized by a GWP (Global Warming Potential) value equal to 1. High efficiency/footprint ratios are achieved thanks to the use of inverter-driven compressors and finned pack exchangers with a large exchange surface installed in a "V" configuration.

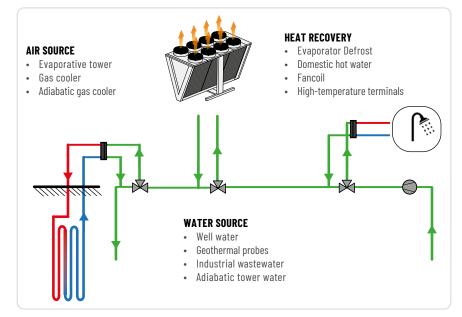
- EC fans as standard (as AC option)
- Available version: Liquid chiller and Free-Cooling chiller (Free-Cooling version not available with adiabatic saturation system)
- Aisi 316L stainless steel refrigeration circuit
- Low pressure side PS: 85 bar

Higher efficiency potential

Ejector technology (available as an option) makes it possible to flood the evaporator and **increase the unit's performance by 8%.**

Natural refrigerant

The refrigerant R744 is a natural gas, largely available in nature and without limitations of use. In addition, it is inert, non-toxic and, more importantly, non-flammable, all of which contributes **to reducing costs and the difficulties associated with installing the systems safely.** This refrigerant can be widely used in the field of commercial refrigeration; among other things, it offers good thermodynamic performance due to its inherently favourable


chemical and physical properties.

Modular and efficient

The configuration with very deep modular 'V' coils provides an extensive heat exchange surface area and therefore **excellent thermal efficiency levels in relation to the unit footprint**. Another special feature is the material of the coil tubes (alloy of copper and steel) which ensures mechanical strength to high pressures (up to 130 bar) and heat transfer coefficients greater than those of stainless steel-only tubes. By connecting in parallel each CDA unit via special kits (on request) a modular configuration can be obtained capable of meeting high cooling capacity requirements and guaranteeing **high redundancy**, with full system management via the on-board electronics.

Maximum efficiency at partial loads

The choice of adopting a single refrigerant circuit configuration with an inverter-driven compressor, the use of EC electronic switching fans (supplied as standard) and management of the variable flow rate through circulation pumps: **these main features maximize the efficiency of the CDA range at partial loads.**

Very high temperature and multi-source heat recovery

CO₂ in the transcritical system allows several exchangers to be placed in series on the dissipation side. A typical configuration includes:

- a partial or total heat recovery exchanger that recovers the dissipated heat and produces instantaneous hot water at very high temperatures (over 90°C), without altering the operation of the unit. A typical application is the production of instantaneous hot water;
- an exchanger with air dissipation;
- **an exchanger with dissipation in water using well water or geothermal probes,** to further cool the CO₂ and guarantee greater efficiency and cooling performance during the most critical periods of operation.

The compressors and pumping kit are housed in a box lined internally with soundproofing material.

CDA-F		095CS	190CS	285CS
		Cooling: User water values 12/	/7°C, 35°C outside air, 40% U.R.	
Cooling capacity	kW	96	192	288
Total absorbed power	kW	29	58	87
EER		3.33	3.33	3.33
		User water values 12/7°C,	10/80°C source water side	
Cooling capacity	kW	131	262	393
Thermal power	kW	164	328	492
Total absorbed power	kW	33.5	67	100.5
COP		8.81	8.81	8.81
Sound power	dB(A)	86	89	91
Dimensions [LxHxD]	mm	2255×2655×1600	2255×2655×3200	2255×2655×4800

www.hiref.it

CHiRef

TVA

DATA CENTER INDUSTRIAL

MULTI-PROTOCOL Communication Interface

3

AXIAL FANS

SERVICES

285.9-1367.1 kW

FAST RESTART

INVERTER DRIVEN

LOW GWP REFRIGERANT

SHELL AND Tube Heat Exchanger

Α

CLASS A

AIR CONDENSED CHILLERS WITH INVERTER DRIVEN SCREW COMPRESSORS

SCREW COMPRESSORS

TVA is the new range of air cooled chillers for energy-efficient and environment-friendly processes. Low environmental impact has been achieved by using **new HFO refrigerants** with low Global Warming Potential (GWP), while **higher efficiency/footprint ratios** are reached thanks to the special V-configuration of the heat exchange coils and their sizing, **the largest among the chillers currently available on the market**. The Free-Cooling version - where heat exchange surface areas are double the market average - **ensure outstanding performance**. The high thermodynamic efficiency with low Total Equivalent Warming Impact (TEWI) is combined with a special focus on maintainability and **easy accessibility of the compressors contained in the removable HiRail** module which reduces noise emissions.

Inverter screw compressors

Inverter equipped with screw compressors combine the possibility of moving large volumes of refrigerant with **the guarantee of constant power modulation and high energy efficiency even at partial loads.**

New refrigerant R1234ze

TVA air condensed chillers use **the new HFO refrigerant with low GWP** (GWPR1234ze=6) as part of a wider Green Technology approach. (Also available in version with R134a refrigerant and on request with R513A.)

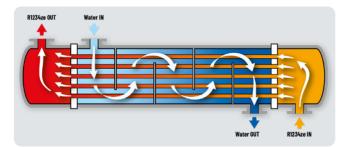
• Refrigerant R1234ze and R515B

- Also available with R134a refrigerant and on request with R513A
- Capacity modulation: with slide valve or with inverters on both compressors or on one compressor only
- EC Fans
- Electronically controlled expansion valve
- HiNode Supervision
- Monitoring and limitation of the maximum absorbed power

CATALOGUE CHILLERS AND HEAT PUMPS

Low noise and accessibility: HI-RAIL

The compressor hoods dramatically reduce noise thanks to the use of special soundabsorbing materials. On request, sliding rails allow them to be removed effortlessly, making all maintenance tasks much easier. The compressors can also be removed by hooking from above and lifting with a crane.



Modular and efficient

The configuration with very deep 'V' modular coils provides

an extensive heat exchange surface area and therefore excellent thermal efficiency in relation to the unit footprint. The Free-Cooling version features heat exchangers sized in such a way as to allow a Total Free-Cooling

Temperature (TFT) of 10°C.

New concept of heat exchange

Single pass shell and tube evaporators provide **excellent levels of thermodynamic efficiency** thanks to full heat exchange counter-flow.

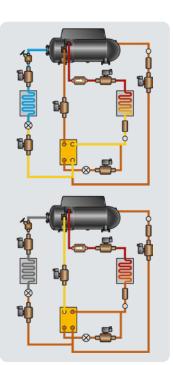
TVA		0311F	0331F	0361F	0381	0421	F 0451	F 0481	IF 053	1F 058	1F 062	1F 06	61F 07	721F 0	801F)831F	0901F	0971F	1041F	1101F	1161
Ra	ffreddamen	to/Fre	e-Cooli	ing: Tei	mpera	tura ac	qua ut	enza 1	2/7°C	20% gl	icole e	tilenio	co, aria	a este	rna 35	°C, 40	% U.R.				
Cooling capacity	kW	285.9	296.7	329.9	362.4	394.2	420.3	3 438.	8 478	.4 513	579	9 59	6.9 66	60.7	719.1	749.1	790.8	847.2	929.2	979.7	1059
Total absorbed power	kW	90.2	92.9	98.2	105.9		121.5									216.8	233.9	248.7	273.6	298.7	315.
EER		3.17	3.19	3.36	3.42	3.49	3.46	3.46	3 3.6	4 3.5	1 3.5	5 3.	48 3	.42	3.58	3.46	3.38	3.41	3.4	3.28	3.36
Sound power	dB(A)	92	92	93	93	94	94	94	95		97	9	17	98	99	99	99	99	99	100	100
Dimensions [LxHxD]	mm	x2	04 650 255	X2	655 650 255	790	16×2650	x2255		9722 ×2650 ×2255	11	100×26	50×225	55	12854>	(2650x	2255	13	3355×26	50×225	5
TVA		0311F	0331F	0361F	0381	0421	F 0451	F 0481	IF 053	1F 058	1F 062	1F 06	61F 07	721F 0	801F (0831F	0901F	0971F	1041F	1101F	1161
		Raffred	Idame	nto/Fre	e-Coo	ling: Te	empera	atura a	icqua	utenza	12/7°C	, glica	le etil	enico	20%						
Full Free-Cooling temperature	°C	1.1	1	1.8	1.4	2	1.8	1.5						1.2	1.4	1.2	0.9	1.2	0.7	0.3	-1.3
Sound power	dB(A)	92	92	93	93	94	94	94	95	96	97	g	17	98	99	99	99	99	99	100	100
Dimensions [LxHxD]	mm	x2	04 650 255	x2	655 650 255	790	16×2650	Ix2255		9722 ×2650 ×2255	11	100×26	50x22§	55	12854>	(2650x	2255	13	3355x26	50×225	5
TVA		0381C	0401C	0451C	0481C	0531C	0581C	0621C	0661C	0721C	0801C	0831C	0901C	0971C	10410	1101	C 1161C	12310	12910	1351C	1421
				Cooling	j: User	water	values	s 12/7°	C, 35°	C outsi	de air, 4	40% l	J.R.								
Cooling capacity	kW	354.5	386	423.1	464.1	500.3	520	568.3	609.4	699.7	751.7	802.4	865.5	877	958.3	1007	1065.1	1121.2	1178.4	1247.6	1367
Total absorbed power	kW	112.3	123.4	132.9	146.9	156.1	165.7	180.4	190.8	224.1	238.1	251.1	277.9	280.7	306.3	319.5	5 333.9	351	375.4	388.2	417.
EER		3.16	3.13	3.18	3.16	3.21	3.14	3.15	3.19	3.12	3.16	3.2	3.11	3.12	3.13	3.15		3.19	3.14	3.21	3.27
SEER		4.43	4.43	4.53	4.57	4.53	4.52	4.5	4.62	4.51	4.5	4.65	4.57	4.44	4.52	4.59		4.66	4.65	4.54	4.92
SEPR		5.4	5.45	5.52	5.91	5.9	5.83	5.52	5.99	5.54	5.59	6.05	6.04	5.67	5.64	5.81		5.75	5.75	5.96	6.46
ESEER		4.11	4.14	4.22	4.28	4.26	4.24	4.19	4.35	4.18	4.18	4.36	4.27	4.14	4.23	4.31		4.33	4.31	4.26	4.5
Sound power	dB(A)	92	92	95	96	97	96	96	100	99	99	102	101	99	99	102	104	100	100	103	105
Dimensions [LxHxD]	mm	5	404x26	50x225	5	66	655x268	50x2258	ō	79	106×265	0x225	5		9722x2	650x22	255	x2	100 1650 1255	x2	854 650 255

Dati dichiarati con utilizzo di refrigerante R134a | Disponibile anche in alimentazione 60 Hz

www.hiref.it

CHiRef

DATA CENTER INDUSTRIAL


SERVICES

TTX

AIR CONDENSED CHILLERS WITH OIL-FREE CENTRIFUGAL COMPRESSORS

The TTX range is **the most innovative and efficient** solution for air-condensed liquid chillers. The use of the oil-free centrifugal compressor in combination with new small-sized flooded exchangers (minimised water and refrigerant approach and reduction of refrigerant charge compared to traditional flooded heat exchangers) allows **top efficiency values to be achieved**, especially at partial loads. TTX range chillers can be used with **the new HFO R1234ze refrigerant** characterised by a **very low environmental impact**, minimising the TEWI of the entire system.

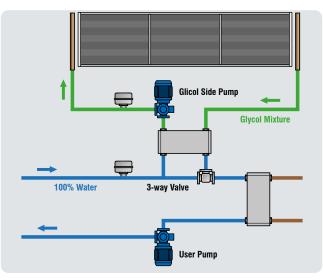
Top-class thermodynamic performance!

An effective combination of "oil-free" centrifugal compressor and flooded exchangers allows maximisation of thermal exchange efficiency; this is largely due to the absence of oil in the circuit and the reduced approach temperature between water and refrigerant (1K) as a result of no overheating in the evaporator. Cycle efficiency is enhanced by the centrifugal compressor, which provides **ultra-high efficiency at partial loads**, and by the economiser, which ensures **intermediate regenerative exchange in the circuit**.

• Refrigerant R134a

- Available version: Liquid chiller and Free-Cooling chiller (Free-Cooling version not available with adiabatic saturation system)
- Energy efficiency class A
- Optional EC electronic switching fans
- Refrigerant leak sensor
- Water connections with Vic-Taulic quick couplings
- Dual day/night noise emission set-point

CATALOGUE CHILLERS AND HEAT PUMPS



Acoustic comfort

Two different soundproofing systems are available: the most suitable one will depend on the importance of noise containment in the overall plant layout. Adopted technical solutions include fan speed control and compartmentalisation of compressors and pumping kits in a box internally lined with soundproofing material.

New refrigerant R1234ze

On request, TTX air condensed chillers can use **the new HFO refrigerant with low GWP** (GWPR1234ze=6), part of a wider Green Technology approach. (The standard version is with R134a).

Glycol-Free kit

The Free-Cooling versions can be selected with the "Glycol- Free" kit (on board the unit) to confine the water-antifreeze mix inside the finned coils. This solution **maximises heat exchange efficiency at the evaporator** with the exclusive use of pure water; it also **dramatically reduces pumping costs.**

Maximum efficiency at partial loads

The adoption of oil-free centrifugal compressors, electronically controlled expansion valves, flooded heat exchangers, fan modulation and variable flow rate controlled with circulation pumps are all **key** features that make the TTX range particularly efficient at partial loads.

ТТХ		280CS	380CS	410CS	531CS	561CS	631CS	761CS	813CS	911CS	821CS	943CS	1064CS
			Cooling:	User water	values 12/	7°C, 35°C (outside air,	40% U.R.					
Cooling capacity	kW	281	380	414	529	562	661	759	809	909	829	943	1057
Total absorbed power	kW	90	121	130	169	180	211	242	259	263	260	300	339
EER		3.12	3.14	3.19	3.12	3.12	3.14	3.14	3.12	3.46	3.19	3.15	3.12
Dimensions [LxHxD]	mm	3065 x2652 x2256	4065 x2652 x2256	5065×26	52×2256	6130 x2652 x2256	7130 x2650 x2256	8130×26	50×2256	9130 x2650 x2256	101	120×2650×22	256

www.hiref.it

CHiRef

HCB

DATA CENTER INDUSTRIAL

SERVICES

AIR CONDENSED CHILLERS WITH INVERTER DRIVEN SCREW COMPRESSORS COOLING ONLY VERSION


369.7-1199.4 kW

HCB ChillBatic is the new range of aircondensed chillers, designed for energyefficient, environment-friendly processes. Low environmental impact has been achieved by using new HFO refrigerants with low GWP (Global Warming Potential), while higher efficiency/footprint ratios are attained thanks to the special V-configuration of the heat exchange coils and their sizing, the largest among the chillers currently on the market. The adiabatic cooling technology also produces the highest efficiency rates both at partial and at nominal loads thanks to the lower temperature of the air entering the coils. High thermodynamic efficiency with low Total Equivalent Warming Impact (TEWI) is combined with a special focus on maintainability and easy accessibility of the compressors contained in the removable HiRail module which reduces noise emissions.

New refrigerant R1234ze

HCB range air condensed chillers use the **new HFO refrigerant with low GWP** (GWPR1234ze=6) as part of a wider Green Technology approach. (Also available in a version with R134a refrigerant).

Inverter screw compressors

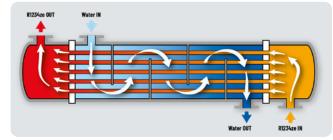
Inverter equipped with screw compressors combine the possibility of moving large volumes of refrigerant with **the guarantee of constant power modulation and high energy efficiency even at partial loads.**

- Refrigerant R1234ze and R515B
- Also available with R134a refrigerant
- Also available in Low-Noise silenced set-up with internal compartment lined with sound-absorbing material
- Capacity modulation: with slide valve or with inverters on both compressors or on one compressor only
- EC Fans
- Electronically controlled expansion valve
- HiNode Supervision
- Monitoring and limitation of the maximum absorbed power

CATALOGUE CHILLERS AND HEAT PUMPS

Modular and efficient

The configuration with very deep 'V' modular coils **provides an extensive heat exchange surface area and therefore excellent thermal efficiency in relation to the unit footprint.**


Low noise and accessibility: HI-RAIL

The compressor hoods dramatically reduce noise thanks to the use of special sound-absorbing materials. On request, sliding rails allow them to be removed effortlessly, making all maintenance tasks much easier. The compressors can also be removed by hooking from above and lifting with a crane.

Adiabatic humidification system

Adiabatic humidification consists of a series of humidification panels placed before the dissipation coils and kept uniformly humidified. With this system, hot air passes through the humidified panels, comes into contact with the contained water and transforms it into water vapour: the outgoing air is therefore cooler and passes through the dissipation coils at a lower temperature, **increasing the efficiency of the thermodynamic cycle and the cooling capacity**. Considering average climatic conditions, the energy saving on an annual basis is more than **35%** compared to a conventional chiller with the same footprint.

New concept of heat exchange: spray flooded shell and tube heat exchanger

A spray flooded shell and tube construction guarantees **effectiveness and efficiency** thanks to the minimal approach temperature between refrigerant and water. It requires about **30% less refrigerant charge** compared to traditional flooded shell and tube configurations: a solution that **benefits the environment** and results in **costs savings**, in terms of both CapEx and OpEx.

HCB		0381C	0401C	0421C	0451C	0481C	0531C	0581C	0621C	0661C	0721C	0801C	0831C	0901C	0971C	1041C	1101C	1161C	1231C
			C	ooling:	User w	ater va	lues 12 <i>1</i>	7°C, 35	5°C outs	side air,	40% U	.R.							
Cooling capacity	kW	369.7	398.5	417.3	442.2	477.9	519.2	565.1	614.8	652.2	705.6	773.6	815.5	880.5	938.5	1019.2	1067.7	1123.6	1199.4
Total absorbed power	kW	98.5	107.4	114.7	120.4	129.7	137.8	152.1	164.7	177.3	193.6	205.8	221	238	251.9	272.1	288.8	306	327.3
EER		3.75	3.71	3.64	3.67	3.68	3.77	3.72	3.73	3.68	3.65	3.76	3.69	3.7	3.73	3.75	3.7	3.67	3.66
Sound power	dB(A)	93	93	93	96	97	97	96	97	97	97	98	98	98	98	99	99	100	100
Sound power [Low noise]	dB(A)	88	88	88	91	92	92	91	92	92	92	93	93	93	93	94	94	95	95
Dimensions [LxHxD]	mm		5755	-	7405 × 26	50 × 2256	6	8855	x 2650 x	2256	1	0700 × 26	352 × 225	6	130 ×20 ×22				

www.hiref.it

SERVICES

HCB-F

DATA CENTER INDUSTRIAL

AIR CONDENSED CHILLERS WITH INVERTER DRIVEN SCREW COMPRESSORS - FREE-COOLING VERSION

299.8-1199.4 kW

AXIAI FANS

LOW GWP

SPRAY FLOODED Shell and tube

4

FAST RESTART

INVERTER DRIVEN

cooled chillers, designed to ensure that processes are both energy-efficient and environment-friendly. Low environmental impact has been achieved by using new HFO refrigerants with low GWP (Global Warming Potential), while **higher efficiency**/ footprint ratios are reached thanks to the special V-configuration of the heat exchange coils and their sizing, the largest among the chillers currently available on the market. The Free-Cooling version - where heat exchange surface areas are double the market average - ensure outstanding performance. The high thermodynamic efficiency low Total Equivalent Warming Impact (TEWI) is combined with a special focus on maintainability and **easy** accessibility of the compressors contained in the removable HiRail module which reduces noise emissions.

HCB ChillBatic sets a new standard for air

New refrigerant R1234ze

HCB range air condensed chillers use the **new HFO refrigerant with low GWP** (GWPR1234ze=6) as part of a wider Green Technology approach. (Also available in a version with R134a refrigerant).

Inverter screw compressors

Inverter equipped with screw compressors combine the possibility of moving large volumes of refrigerant with **the guarantee of constant power modulation and high energy efficiency even at partial loads.**

- Refrigerant R1234ze and R515B
- Also available with R134a refrigerant
- Also available in Low-Noise silenced set-up with internal compartment lined with sound-absorbing material
- Capacity modulation: with slide valve or with inverters on both compressors or on one compressor only
- EC Fans
- Electronically controlled expansion valve
- HiNode Supervision
- Monitoring and limitation of the maximum absorbed power

CATALOGUE CHILLERS AND HEAT PUMPS

Modular and efficient

The configuration with very deep 'V' modular coils **provides an extensive heat exchange surface area and therefore excellent thermal efficiency in relation to the unit footprint.**

The Free-Cooling version features heat exchangers sized in such a way as to allow a Total Free- Cooling Temperature (TFT) of 10°C (Data Center conditions with chilled water to 19/25 °C).

Low noise and accessibility: HI-RAIL

The compressor hoods dramatically reduce noise thanks to the use of special sound-absorbing materials. On request, sliding rails allow them to be removed effortlessly, making all maintenance tasks much easier. The compressors can also be removed by hooking from above and lifting with a crane.

New concept of heat exchange: spray flooded shell and tube heat exchanger

A spray flooded shell and tube construction guarantees **effectiveness and efficiency** thanks to the minimal approach temperature between refrigerant and water. It requires about **30% less refrigerant charge** compared to traditional flooded shell and tube configurations: a solution that **benefits the environment** and results in **costs savings**, in terms of both CapEx and OpEx.

HCB-F		0311F	0331F	0361F	0381F	0421F	0451F	0481F	0531F	0581F	0621F	0661F	0721F
		User w	ater tempe	rature 12/1	7°C 20% et	hylene glyo	col, outside	air 35°C, 4	0% R.H.				
Cooling capacity	kW	299.8	316	342	362.1	402	423.7	445.4	478.7	517.8	553.6	589.1	654.1
Total absorbed power	kW	78.7	84.2	91	97.6	106.6	112.9	119.2	127.8	135.8	146	160.5	172.8
EER		3.81	3.75	3.76	3.71	3.77	3.75	3.74	3.75	3.81	3.79	3.67	3.79
Sound power	dB(A)	93	93	94	94	95	95	95	97	98	98	98	98
Sound power [Low noise]	dB(A)	88	88	89	89	90	90	90	92	93	93	93	93

Also available with 60 Hz power supply

HCB-F		0311F	0331F	0361F	0381F	0421F	0451F	0481F	0531F	0581F	0621F	0661F	0721F
			Utilit	y water ter	nperature 1	12/7°C, eth	ylene glyco	ol 20%					
Full Free-Cooling temperature	°C	-0.8	-1.1	0	-0.3	0.3	0.1	-0.2	0.4	0	0.4	0.1	0.4
Sound power	dB(A)	93	93	94	94	95	95	95	97	98	98	98	98
Sound power [Low noise]	dB(A)	88	88	89	89	90	90	90	92	93	93	93	93

Also available with 60 Hz power supply

HCB-F		0381C	0401C	04210	04510	0481C	0531C	0581C	0621C	0661C	0721C	0801C	0831C	0901C	0971C	1041C	1101C	1161C	1231C
			C	ooling:	User wa	at <mark>er</mark> val	ues 12 <i>1</i>	7°C, 35	°C outs	side air,	40% U	.R.							
Cooling capacity	kW	369.7	398.5	417.3	442.2	477.9	519.2	565.1	614.8	652.2	705.6	773.6	815.5	880.5	938.5	1019.2	1067.7	1123.6	1199.4
Total absorbed power	kW	98.5	107.4	114.7	120.4	129.7	137.8	152.1	164.7	177.3	193.6	205.8	221	238	251.9	272.1	288.8	306	327.3
EER		3.75	3.71	3.64	3.67	3.68	3.77	3.72	3.73	3.68	3.65	3.76	3.69	3.7	3.73	3.75	3.7	3.67	3.66
Sound power	dB(A)	93	93	93	96	97	97	96	97	97	97	98	98	98	98	99	99	100	100
Sound power [Low noise]	dB(A)	88	88	88	91	92	92	91	92	92	92	93	93	93	93	94	94	95	95
Dimensions [LxHxD]	mm							7405 × 26	50×2256	3	8855	x 2650 x	2256	1)700 × 28	652 × 225	6	130 ×20 ×21	652

www.hiref.it

SERVICES

HPS / MPS

INDUSTRIAL

MULTI-PROTOCOL Communication Interface

REVERSIBLE AND MULTIPURPOSE AIR CONDENSED HEAT PUMPS FOR LOW OUTDOOR TEMPERATURES

36.3-202.2 kW

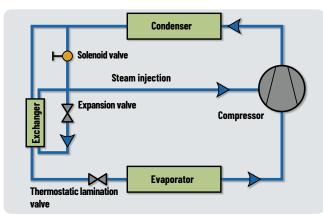
AXIAI FANS


EVI SCROLL

HPS is the HiRef range of air-to-water multipurpose reversible heat pumps designed for operation in very cold climates. The use of compressors with EVI steam injection technology allows the production of hot water up to 65 °C and operation with outdoor temperatures down to -20 °C. This is combined with special focus on Low Noise (the "Low-Noise" silenced version is supplied as standard) and the use of different refrigeration circuit architectures to meet the needs of many different system applications.

Efficiency and reliability in line with system requirements

The available refrigerating circuit configurations have been designed to ensure, also simultaneously, **redundancy and efficiency at partial loads.** More specifically, the units - depending on the size of the machine and on specific plant engineering requirements consist of two compressors on two circuits **for high system redundancy** or four compressors (double tandem) on two circuits **for a system that is simultaneously redundant and efficient at partial loads.**


Production of hot water up to 65 °C

The units of the HPS range are capable of **producing water at 65°C**, as well as operating with outdoor air temperatures down **to -20°C**.

• Refrigerant R410A

- EVI compressors with steam injection
- Electronically controlled expansion valve
- "Cold" start Smart Kit configurable on request, to manage any mixing systems
- Hydrophilic coated coils with wider fin pitch
- Defrost ice disposal chutes with heating elements
- Optional EC electronic
 switching fans
- Available in multipurpose version for 2 and 4 pipe systems

CATALOGUE CHILLERS AND HEAT PUMPS

Units optimised for climates with T down to -20°C

The Scroll compressors of the HPS range use **steam injection technology:** a light flow of refrigerant in a medium-pressure vapour state is "injected" into the coils in the compression chamber. This system allows for both **an increase in the cooling** (and therefore, also the heating) **capacity and efficiency and, above all, an extension of the operating range of the heat pump;** this makes of the HPS range the ideal solution in case of extremely low outdoor temperatures.

Extra low noise

All units in the HPS range are, as standard, **"Low Noise"**, which means fan speed is controlled, anti-vibration piping is used on the refrigeration circuit, and the compressors and pumping kit are compartmentalised in a box lined with soundproofing material. **All this ensures minimum noise emissions throughout the system.**

Smart Defrost System

A factor that heavily weighs on the costs of managing the entire plant is finned pack evaporator defrosting during wintertime operation. The (patented) Smart Defrost System by HiRef is able to identify a decline in the exchanger performance caused by the formation of ice and to minimise the duration of the defrosting process. The use of coils treated with hydrophilic surface coating **speeds up the** defrosting process so that melting of just the first, thin ice layer on the fins is only required for cleaning.

HPS		041HL	051HL	071HL	081HL	101HL	134HL	164HL	204HL
		Cou	oling: User water	r values 12/7°C,	35°C outside air	, 40% U.R.			
Cooling capacity	kW	36.3	45.5	61.8	68.9	79.2	121.5	136.9	175.2
Total absorbed power	kW	12	15	19.7	23.3	25.4	40.2	48.9	62.5
EER		3.03	3.03	3.14	2.96	3.12	3.02	2.8	2.8
		Hea	ting: User wate	r values 40/45°	C, 7°C outside ai	r, 89% U.R.			
Thermal power	kW	43.6	53.9	72.5	81.6	92.2	140.3	158	202.2
Total absorbed power	kW	13	15.7	21.2	24.4	26.8	41.1	48.6	61.5
COP		3.34	3.42	3.41	3.35	3.44	3.41	3.25	3.29
SCOP		2.83	2.96	2.91	2.9	2.91	3.2	2.85	3.05
Sound power	dB(A)	79	78	80	81	81	80	82	82
Dimensions [LxHxD]	mm	2440x17	735×1183	2792×17	735×1183	3540x1679x1183	3538×18	84x1653	3538x2284x1653

Also available with 60 Hz power supply

MPS		041PL	051PL	071PL	081PL	101PL	134PL	164PL	204PL
		Coc	oling: User water	r values 12/7°C,	35°C outside air	, 40% U.R.			
Cooling capacity	kW	39.5	49.1	66.7	73.9	86	131	148.8	188.1
Total absorbed power	kW	12	15.1	19.6	23.4	25.5	40.1	49	62.5
EER		3.29	3.24	3.41	3.16	3.37	3.27	3.03	3.01
	Т	otal Recovery: I	Jtility water tem	perature 12/7°C	, Recovery wate	er temperature 40	0/45°C		
Cooling capacity	kW	38.5	47.8	64.9	72	83.7	127.3	144.4	182.2
Thermal power	kW	51.135	63.6	85.8	96.89	110.4	170.3	196.46	248.3
Total absorbed power	kW	13.3	16.7	22	26.2	28.2	45.3	54.8	69.6
TER		6.74	6.67	6.85	6.45	6.89	6.57	6.22	6.19
		Hea	ting: User wate	r values 40/45°(C, 7°C outside ai	r, 89% U.R.			
Thermal power	kW	43.6	53.9	72.5	81.6	92.2	140.3	158	202.2
Total absorbed power	kW	13	15.7	21.2	24.4	26.8	41.1	48.6	61.5
COP		3.34	3.42	3.41	3.35	3.44	3.41	3.25	3.29
SCOP		2.83	2.96	2.91	2.9	2.91	3.2	2.85	3.05
Sound power	dB(A)	79	78	80	81	81	80	82	82
Dimensions [LxHxD]	mm	2440x17	35x1183	2792×17	735x1183	3540x1679x1183	3538×18	384x1653	3538x2284x1653

Also available with 60 Hz power supply

www.hiref.it

HWC / HWP

AIR CONDENSED CHILLERS AND HEAT PUMPS

INDUSTRIAL

WITH SCROLL COMPRESSORS FOR INDOOR INSTALLATIONS

57.7–201.5 kW

SERVICES

HWC is the range of air-condensed liquid chillers with Scroll compressors for indoor installations. Four different versions (chiller, Free-Cooling chiller, reversible heat pump and multipurpose) and several power output rates are available. The compact frame makes these units highly versatile and suited to a wide range of system layouts. Sizing and selection of individual components seeks to contain energy consumption, aiming to optimise energy savings not just for individual chillers but for the entire system. The unit is suitable for installation in equipment rooms and can be ducted at both intake and delivery ends. The maximum working head available is 250 Pa.

The configurations available for the refrigeration circuit are:

EFFICIENCY PACK 1: Dual compressor and dual circuit unit, for a system with greater redundancy (only for Free-Cooling versions).

EFFICIENCY PACK 2: Dual compressor (tandem) on single circuit for greater efficiency at partial loads.

EFFICIENCY PACK 4: Four compressors (dual tandem) on dual circuit, for a redundant system that is efficient with low loads.

- 2 different soundproofing setups available: Standard and Low Noise
- Electric control panel with IP55 protection rating
- Radial EC motor fans
- Electronic expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable microprocessor control with proprietary software
- Available with single or double pumping kit in timed rotation
- Compliance with ERP regulations

CHiRef

CATALOGUE CHILLERS AND HEAT PUMPS

Attention to detail and to low noise requirements

Scroll compressors are fitted on rubber feet that **dampen vibration and attenuate the noise transmitted to the various system parts.** On request, the compressor compartment can be lined with special sound absorbing material and the compressors encased in special insulating hoods **to reduce airborne noise emissions.**

All accessories on-board the machine

The special component layout, together with compact plate heat exchangers and Scroll compressors, ensures on one hand **easier access to carry out maintenance procedures** and on the other hand, **sufficient internal space available for fitting a wide range of accessories and hydraulic options.** The hydraulic circuit may include a dual shut-off pump, flow switch, tank, expansion tank and safety valve.

Maximum efficiency at partial loads

The adoption of a multi-Scroll solution, the use of electronically controlled expansion valves and plate heat exchangers and modulation of the compressors are all key features **that make the HWC range particularly efficient at partial loads.**

HWC		052CS	062CS	072CS	082CS	092CS	102CS	112CS	132CS	142CS	162CS	182CS	204CS
			Cooling:	User water	values 12/	7°C, 35°C	outside air,	40% U.R.					
Cooling capacity	kW	57.7	62	71	78.7	94.5	106.8	119.8	128.2	142	155.5	183	201.5
Total absorbed power	kW	18.5	23	25	28.7	33.8	39.6	42.6	47.1	55.2	63.8	68.5	82.2
EER		3.12	2.69	2.84	2.74	2.8	2.7	2.82	2.72	2.57	2.44	2.67	2.45
SEER		4.38	4.1	4.46	4.38	4.2	4.29	4.36	4.36	4.15	4.21	4.14	4.1
SEPR		5.29	5.26	5.32	5.33	5.27	5.22	5.42	5.3	5.11	5.05	5.24	5.15
Sound power	dB(A)	82	82	82	83	85	86	86	86	89	90	92	89
Dimensions [LxHxD]	mm		2000 x 11	00 x 2020		2400 x 11	0 x 2020		3090 x 110	00 x 2020		4090 x 11	00 x 2104

Calculated with 20% glycol. Free-Cooling versions always have a refrigerating configuration consisting of one compressor per circuit or a dual tandem arrangement on two circuits | Features referred to the standard set-up. If not available, these features are referred to the Low Noise or Super Low Noise set-ups | Also available with 60 Hz power supply | Data declared with use of R410A refrigerant

HWP		052PS	062PS	072PS	082PS	092PS	102PS	112PS	132PS	142PS	162PS	182PS	204PS
			Cooling:	User water	values 12/	7°C, 35°C	outside air,	40% U.R.					
Cooling capacity	kW	55.1	61.2	71	78.7	94.5	106	119.6	127.9	141.6	152.3	181.1	201.5
Total absorbed power	kW	19.9	23.1	25	28.7	33.8	39.7	42.5	47.1	55.1	63.6	68.4	82.2
EER		2.77	2.65	2.84	2.74	2.8	2.67	2.81	2.71	2.57	2.4	2.65	2.45
			Heating:	User water	values 40	/45°C, 7°C	outside air	, 89% U.R.					
Thermal power	kW	58	64.6	76.6	85.5	102.3	115.2	131.2	141.8	159.1	175.1	203.1	230.8
Total absorbed power	kW	21	23.9	26.6	29.3	36.3	41.1	44	48	53.2	59.7	68.4	77.8
COP		2.76	2.71	2.88	2.92	2.82	2.8	2.98	2.96	2.99	2.93	2.97	2.97
SCOP		3.2	3.23	3.27	3.37	3.22	3.23	3.42	3.46	3.46	3.5	3.4	3.44
Sound power	dB(A)	82	82	82	83	85	86	86	86	89	90	92	89
Dimensions [LxHxD]	mm		2000 x 11	00 x 2020		2400 x 11	00 x 2020		3090 x 110	00 x 2020		4090 x 11	00 x 2104

Data declared with use of R410A refrigerant | Calculated with 20% glycol. Free-Cooling versions always have a refrigerating configuration consisting of one compressor per circuit or a dual tandem arrangement on two circuits | Features referred to the standard set-up. If not available, these features are referred to the Low Noise or Super Low Noise set-ups | Also available with 60 Hz power supply

SERVICES

DATA CENTER INDUSTRIAL

CLASS A CHILLERS AND HEAT PUMPS AIR CONDENSED WITH SCROLL COMPRESSORS

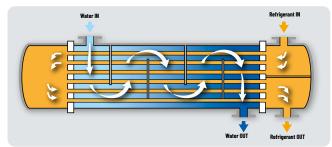
120.3-265.2 kW

The new TSS range chillers and heat pumps are air/water units in energy class A for both cooling and heating, available for use with R410A refrigerant or, in the "A2L" version, with low environmental impact R454B refrigerant. The TSS range is designed **to manage the conditioning of industrial plants and thermal loads in technological applications where 24/7 system reliability is required.**. The TSS range uses latest-generation Scroll compressors, shell and tube water heat exchangers optimised for use with **high pressure refrigerants** (R410A/R454B) and axial fans suitable for outdoor installation.

- 3 different soundproofing setups available: Standard, Low Noise and Super Low Noise
- Electric control panel with IP55 protection rating
- High power density units in both chiller and heat pump modes
- Radial EC motor fans (optional)
- Electrically controlled expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable microprocessor control with proprietary software
- Compliance with ERP regulations

CHiRef

CATALOGUE CHILLERS AND HEAT PUMPS


Acoustic comfort

Two different soundproofing systems are available: the most suitable one will depend on the importance of noise containment in the overall plant layout. Adopted technical solutions include fan speed control and compartmentalisation of compressors and pumping kits in a box internally lined with soundproofing material.

Maximised energy efficiency

The units of the TSS range belong to the energy efficiency class **A**, both in the chilling only version and in the heat pump version. This is thanks to a careful selection of internal components, which also includes the adoption of innovative high efficiency Scroll compressors with direct start, permanent magnet motor technology. The high modulation range guaranteed by the multi-Scroll technology allows cooling/ heating requirements to be met at any time, minimising energy waste and increasing seasonal efficiency.

Reliability: shell and tube

The use of shell and tube heat exchangers with exchange water flow on the shell side implies **a lower risk of blocking the flow** due to exchanger clogging compared to units with plate heat exchangers. This is thanks to **the larger throughsections**, the exchanged power being the same. Additionally, the dual-pass heat exchanger **ensures high heat exchange efficiency** both in "chiller" and in "heat pump" modes, with lower consumption figures for the user.

TSS		114	124	144	164	194	214	244
		VERSIONE CS	- Cooling: User wa	ter values 12/7°C,	35°C outside air, 4	0% U.R.		
Cooling capacity	kW	120.3	130.2	152.4	164.9	190.2	225.7	251.4
Total absorbed power	kW	34	36.2	43.6	47.5	56	71.1	80
EER		3.54	3.59	3.5	3.47	3.4	3.17	3.14
SEER		4.95	4.83	4.86	4.98	4.97	4.9	4.78
SEPR		5.66	5.7	5.7	5.82	5.86	5.7	5.74
		VERSIONE HS	- Heating: User wa	ter values 40/45°	C, 7°C outside air, 8	39% U.R.		
Thermal power	kW	123.9	130.8	149.9	163.1	186.9	227.5	265.2
Total absorbed power	kW	34.1	36.2	42.5	46.8	53.4	65.1	75.4
COP		3.63	3.61	3.53	3.49	3.5	3.49	3.52
SCOP		3.95	3.85	3.86	3.93	4.05	4.18	4.24
Sound power	dB(A)	83	84	86	86	87	88	89
Sound power [Low noise]	dB(A)	80	81	83	83	84	85	86
Sound power [Super Low noise]	dB(A)	78	80	82	82	84	84	85
Dimensions [LxHxD]	mm	3540×1735×1183		3540×1846×1653		3540×23	330×1653	4206×2330×1653

Also available with 60 Hz power supply | Data declared with use of R410A refrigerant

TAS

DATA CENTER INDUSTRIAL

SERVICES

AIR CONDENSED CHILLERS AND HEAT PUMPS WITH SCROLL COMPRESSORS

60.3-260.5 kW

TAS is the range of air-condensed liquid chillers and heat pumps with Scroll compressors. Three different versions (chiller, Free-Cooling chiller and reversible heat pump) and the several available power output rates make these units **highly versatile and suited to a wide range of system set-ups**. The sizing and selection of individual components have focused on containing energy consumption, aiming to optimise energy savings not just for individual chillers but for the entire system. The unit is suitable for being installed in environments where **noise abatement is fundamentally important;** three different soundproofing setups are available. The configurations available for the refrigeration circuit are:

EFFICIENCY PACK 1: Dual compressor dual circuit unit for higher redundancy systems.

EFFICIENCY PACK 2: Dual compressor (tandem) on single circuit for greater efficiency at partial loads.

EFFICIENCY PACK 4: Four compressors (dual tandem) on dual circuit, for a redundant system that is efficient with low loads.

- 3 different soundproofing setups available: Standard, Low Noise and Super Low Noise
- Radial EC motor fans (optional)
- Electrically controlled expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable microprocessor control with proprietary software
- Available with variable flow pumping kit
- Maintenance kit available
- Compliance with ERP regulations

CATALOGUE CHILLERS AND HEAT PUMPS

Plate heat exchangers

The TAS range uses brazewelded plate exchangers with asymmetrical channels, suitable for the use of high and medium pressure refrigerant gases. The configuration with asymmetrical channels allows **high exchange** efficiencies to be reached while maintaining pressure drops low on the water side - **reducing pumping costs** at both full and partial load.

Acoustic comfort

Three different soundproofing setups are available: the most suitable one will depend on the importance of noise containment in the overall plant layout. Adopted technical solutions include fan speed control, the use of anti-vibration devices on the refrigerating circuit, compartmentalisation of compressors and pumping kits in a box internally lined with soundproofing material.

All accessories on-board the machine

The special component layout, together with compact plate heat exchangers and Scroll compressors, allows users on the one hand to make **the most** of large sized condensing sections and on the other hand, to have sufficient Free-Cooling internal space available for fitting a wide range of accessories and hydraulic options. The hydraulic circuit may include a dual shut-off pump, flow switch, tank, expansion tank and safety valve.

Maximum efficiency at partial loads

The adoption of the multi-Scroll solution, the use of electronically controlled expansion valves, selection of plate heat exchangers, fan modulation and variable flow rate controlled with circulation pumps are all key features that make the **TAS range particularly efficient at partial loads.**

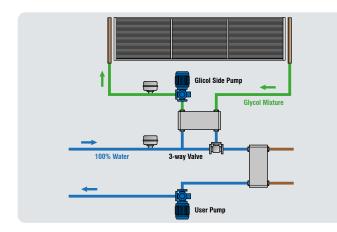
TAS		061FS	071FS	081FS	101FS	114FS	124FS	144FS	164FS	194FS	214FS	244FS
		User wa	ter tempera	ture 12/7°C	20% ethyle	ene glycol, a	utside air 3	5°C, 40% R.I	H.			
Cooling capacity	kW	60.4	74.3	87.1	100.8	116.4	124.5	146.8	159.3	184.6	218.6	246.1
Total absorbed power	kW	17	21.5	25.9	30	34.1	36.6	44.3	48.3	56.7	72.1	81.3
EER		3.55	3.45	3.36	3.36	3.42	3.4	3.31	3.3	3.26	3.03	3.03
Full Free-Cooling temperature	°C	-1.5	-3.2	-5.3	-4.9	-6.5	-4.8	-6.5	-8.1	-5.8	-8.2	-6.5
Sound power	dB(A)	81	83	83	86	83	84	86	86	87	88	89
Sound power [Low noise]	dB(A)	78	80	80	83	80	81	83	83	84	85	86
Dimensions [LxHxD]	mm	2	2792x1735x118	3	3540x1	735x1183	3	540x1846x165	3	3540x2	330×1653	4206 x2330 x1653
TAS		062CS	072CS	082CS	102CS	114CS	124CS	144CS	164CS	194CS	214CS	244CS
			Cooling: Us	ser water va	alues 12/7°C	c, 35°C outsi	ide air, 40%	U.R.				
Cooling capacity	kW	61.5	75.5	88.5	102.8	118.2	127	149.6	162.5	187.7	222.6	250.4
Total absorbed power	kW	16.9	21.4	25.6	29.6	33.8	35.9	43.3	47.2	55.9	71	80
EER		3.63	3.53	3.45	3.47	3.5	3.54	3.46	3.44	3.36	3.14	3.13
SEER		4.68	4.82	4.94	4.71	4.87	4.76	4.79	4.91	4.9	4.81	4.76
SEPR		5.33	5.49	5.73	5.45	5.59	5.61	5.65	5.76	5.77	5.61	5.69
Sound power	dB(A)	81	83	83	86	83	84	86	86	87	88	89
Sound power [Low noise]	dB(A)	78	80	80	83	80	81	83	83	84	85	86
Dimensions [LxHxD]	mm		2792×1735×118	3	3540x1	735×1183	3	540x1846x165	3	3540×2	330×1653	4206 x2330 x1653

TAS		062HS	072HS	082HS	102HS	114HS	124HS	144HS	164HS	194HS	214HS	244HS
			Heating: Us	ser water va	lues 40/45	°C, 7°C outs	ide air, 89%	U.R.				
Thermal power	kW	60.3	74.2	85.5	100.7	121.3	127.6	147	159.6	183.2	223.4	260.5
Total absorbed power	kW	18.8	22.7	26.6	31.3	36.4	39.6	45.2	49.8	57.2	69.8	81.5
COP		3.21	3.27	3.21	3.22	3.33	3.23	3.25	3.21	3.2	3.2	3.2
SCOP		3.45	3.83	3.81	3.74	3.7	3.59	3.61	3.67	3.77	3.9	3.93
Sound power	dB(A)	81	83	83	86	83	84	86	86	87	88	89
Sound power [Low noise]	dB(A)	78	80	80	83	80	81	83	83	84	85	86
Dimensions [LxHxD]	mm	:	2792×1735×118	3	3340 x1735 x1183	3540 x1735 x1183	3	540x1846x165	3	3540x23	330×1653	4206 x2330 x1653

Also available with 60 Hz power supply | Features referred to the standars set-up. If not available, these features are referred to the Low Noise or Super Low Noise set-ups | Data declared with use of R410A refrigerant

CHiRef

МНА

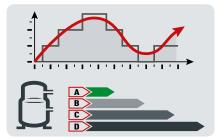

DATA CENTER INDUSTRIAL

SERVICES

AIR CONDENSED CHILLERS AND HEAT PUMPS WITH SCROLL BLDC INVERTER COMPRESSORS

30.2-287.6 kW 0 MULTI-PROTOCOL Communication Interface SCROLL Compressors INVERTER DRIVEN Compressors AXIAI FANS 4 CHiRef Ú ľ Ľ LOW GWP REFRIGERAN PLATE HEAT A2L READY OHIRei

MHA is the HiRef range of air condensed liquid chillers and heat pumps that uses a combination of Scroll ON/OFF compressors and modulating BLDC (Brushless DC-inverter) compressors. **Thanks to timely control of the supplied refrigerating power, based on the achievement of maximum system delivery or energy efficiency, the running costs of the system are minimised**. The excellent configurability of the range in terms of refrigerating circuit, noise levels and available power ratings, together with the numerous accessories and options, make MHA chillers **highly versatile and suitable for a wide range of system applications**.


Glycol-Free kit

The Free-Cooling versions can be selected with the **"Glycol-Free" kit** (on board the unit) to confine the water-antifreeze mix inside the finned coils. This solution **maximises heat exchange efficiency** at the evaporator with the exclusive use of pure water; it also **dramatically reduces pumping costs**.

• Refrigerant R410A

- Available in version: Liquid chiller, Free-Cooling chiller and reversible heat pump
- Variable flow management up to 25% of the nominal flow rate
- Electronically controlled expansion valve supplied as standard
- Quick water connections
- Programmable
 microprocessor control with
 dedicated software
- Optional electronic flow switch

CATALOGUE CHILLERS AND HEAT PUMPS

Dual management of the delivered power

The control software integrated on the MHA range allows management of the cooling capacity, delivered by the Scroll ON/OFF compressors combined with BLDC modulating compressors, according to a dual logic:

- **Maximum power:** the compressors are driven by the inverters at maximum frequency to quickly reach set-point conditions.
- **Maximum efficiency:** the software calculates the point of highest machine efficiency to minimise running costs. This function is particularly effective in the Free-Cooling versions.

Efficiency and reliability in line with system requirements

Users can select, according to unit size and specific plant engineering requirements, refrigerating circuits with different set-ups: **EFFICIENCY PACK 1:** Dual compressor on dual circuit for high system redundancy.

EFFICIENCY PACK 2: Dual compressor (tandem) on single circuit for greater efficiency at partial loads.

EFFICIENCY PACK 3: Three compressors (trio) on single circuit for higher efficiency at partial loads.

EFFICIENCY PACK 4: Four compressors (dual tandem) on dual circuit, for a redundant system that is also efficient with low loads.

Advantages of modulation

DC-inverter compressors are frequency modulated: from an electrical viewpoint, **this significantly reduces inrush current.**

Attention to detail and to low noise requirements

Depending on how important noise containment is in the overall plant layout, a standard version or a **Low Noise version** can be chosen. Adopted technical solutions include fan speed control, the use of anti-vibration devices on the refrigerating circuit, compartmentalisation of compressors and pumping kits in a box internally lined with soundproofing material (**the new HI-BOX by HiRef**).

Maximum efficiency at partial loads

The high precision of the hot-wire flow switch (up to 1/10 of the nominal flow rate), combined with pump modulation via the control software, **allows an ideal combination of machine delivery and water flow rate in the primary circuit**. This **optimises the water flow** required at each operating point and **reduces the power absorbed by the hydraulic module**, preventing the risk of ice formation in the evaporator.

MHA		030	035	061	062	081	082	101	102	104	121	122	124	141	142	144	171	172	174	204	244	294
				Ui	tility wa	ater t	emper	ature	12/7°C	, ethy	lene gl	ycol 2	0%									
Full Free-Cooling temperature	°C	1.6	-1.1	2.2	-	0.6	-	-0.3	-	-0.8	0.6	-	0.5	1.2	-	0.6	0.4	-	-0.4	-0.1	0.1	-1.2
				Cooli	ng: Use	er wat	er valı	ies 12/	/7°C, 3	5°C or	utside	air, 40	% U.R									
Cooling capacity	kW	30.2	40.3	57.8	57.7	75.7	76.4	98.2	98.9	102.4	124.9	127.3	126.6	146.1	147.4	155.7	156.3	156.7	170.4	200.9	252.8	278.6
Total absorbed power	kW	11.3	14.9	18.9	18.8	24.4	24.4	34.2	34.1	37.5	44	43.2	43.4	48.6	48.4	52.3	52.3	52.2	58.7	72.7	86.9	99.4
EER		2.68	2.7	3.07	3.07	3.1	3.13	2.87	2.9	2.73	2.84	2.95	2.91	3.01	3.04	2.98	2.99	3	2.9	2.76	2.91	2.8
SEER		4.5	4.57	4.39	5.17	4.43	5.23	4.18	4.88	4.48	4.28	5.19	4.71	4.27	5.03	4.5	4.19	4.95	4.44	4.55	4.68	4.62
SEPR		5.08	5	6.14	6.08	6.31	6.39	5.62	5.58	5.31	5.7	5.79	5.61	5.9	5.97	5.27	5.75	5.86	5.3	5.35	5.69	5.69
Weight	kg	418	424	600	600	789	789	789	789	789	1085	1085	1085	1390	1390	1390	1430	1430	1470	1620	1943	1985
				Heati	ng: Use		or volu		//.E°C	700 0	utoido	oir Of	10/ II D									
Thermal power	kW	31.7	42.2	neau	57.5	- wai	75.9	-	100.8	106.8	-	133.6	133.5	-	149.8	159	-	160.5	178,1	210.1	257	287.6
Total absorbed power	kW	11.7	15.7	-	19.9	-	26	-	35	38.1	-	45.1	45.7	-	51.8	55.5	-	55.6	61.4	74	89.4	100.4
COP	iiii	2.7	2.69	-	2.88	-	2.92	-	2.88	2.8	-	2.96	2.92	-	2.89	2.86	-	2.89	2.9	2.84	2.88	2.86
SCOP		3.28	3.32	-	3.2	-	3.21	-	3.34	3.32	-	3.36	3.22	-	3.22	3.21	-	3.2	3.2	3.36	3.27	3.31
Weight	kg	423	430	-	600	-	789	-	789	789	-	1085	1085	-	1390	1390	-	1430	1495	1655	1980	2025
Sound power	dB(A)	87	92	87	87	88	88	90	90	90	94	94	88	94	94	90	94	94	90	94	94	94
Sound power [Low noise]	dB(A)	85	90	83	83	86	84	86	86	86	90	90	84	90	90	86	90	90	86	90	90	90
Dimensions [LxHxD]	mm	x14	61 +68 14	x1	40 735 185		297:	2x1735>	(1185		354	0x1735>	(1185		į	540x18	47x165	3		3540 x2247 x1653	x2	206 247 653

Also available with 60 Hz power supply | Free-Cooling version not available for this Efficiency Pack

CHiRef

DATA CENTER

SERVICES

AIR CONDENSED CHILLERS AND HEAT PUMPS WITH SCROLL COMPRESSORS

INDUSTRIAL

43.2-444.7 kW

TPS is the range of air-condensed liquid chillers and heat pumps with Scroll compressors. Three different versions (chiller, Free-Cooling chiller and reversible heat pump) and the several available power output rates make these units **highly versatile and suited to a wide range** of system set-ups. The sizing and selection of individual components have focused on containing energy consumption, aiming to optimise energy savings not just for individual chillers but for the entire system. The unit is available with three soundproofing set-ups. The configurations available for the refrigeration circuit are:

EFFICIENCY PACK 1: Dual compressor dual circuit unit for higher redundancy systems.

EFFICIENCY PACK 2: Dual compressor (tandem) on single circuit for greater efficiency at partial loads.

EFFICIENCY PACK 4: Four compressors (dual tandem) on dual circuit, for a redundant system that is efficient with low loads.

- 3 different soundproofing setups available: Standard, Low Noise and Super Low Noise
- Electric control panel with IP55 protection rating
- Radial EC motor fans (optional)
- Electronic expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable microprocessor control with proprietary software
- Available with variable flow pumping kit
- Maintenance kit available
- Compliance with ERP regulations

CATALOGUE CHILLERS AND HEAT PUMPS

Acoustic comfort

Three different soundproofing set-ups are available: the most suitable one will depend on the importance of noise containment in the overall plant layout. Adopted technical solutions include fan speed control, the use of anti-vibration devices on the refrigerating circuit, compartmentalisation of compressors and pumping kits in a box internally lined with soundproofing material.

All accessories on-board the machine

The special component layout, together with compact plate heat exchangers and Scroll compressors, allows users on the one hand to make **the most of large sized condensing sections** and on the other hand, to have sufficient Free- Cooling internal space available for fitting **a wide range of accessories and hydraulic options.** The hydraulic circuit may include a dual shut-off pump, flow switch, tank, expansion tank and safety valve.

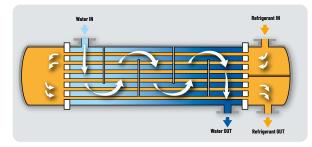
Maximum efficiency at partial loads

The adoption of the multi-Scroll solution, the use of electronically controlled expansion valves, selection of plate heat exchangers, fan modulation and variable flow rate controlled with circulation pumps are all key features that make **the TPS range particularly efficient at partial loads.**

TPS		042	052	062	072	082	092	102	122	124	142	144	162	164
			Cold	user in wa	ater temp	erature 12	°C, ehylen	e glycol 2	0%					
Full Free-Cooling temperature	°C	-2.1	-3.2	-2.2	-3.4	-4.4	-2.9	-2.3	-	-4	-	-3.5	-	-6.7
Veight	kg	671	675	900	910	980	1105	1115	-	1475	-	1490	-	1640
			Cooling			s 12/7°C, 3								r
Cooling capacity	kW	43.2	54.4	63.1	70.9	78.5	94.4	105.6	122.4	125.3	133.7	141.4	160.5	156.2
otal absorbed power	kW	13.1	18.3	20.7	24.3	28.1	32.6	38.5	40.8	42.1	43.9	48.3	59.2	55.8
ER		3.31	2.98	3.05	2.91	2.79	2.9	2.74	3	2.98	3.04	2.93	2.71	2.79
SEER		4.98	4.9	4.63	4.58	4.52	4.35	4.39	4.54	4.53	4.71	4.61	4.34	4.54
EPR		5.69	5.72	5.3	5.38	5.38	5.31	5.22	5.35	5.32	5.41	5.38	5.13	5.38
Veight	kg	525	525	540	570	650	730	730	1010	1050	1055	1070	1085	122
						s 40/45°C,								
hermal power	kW	50.7	57.1	64.2	72.6	80.8	96	108.7	124	126.9	142.4	151.8	175.8	169.
fotal absorbed power	kW	16.8	19.1	22.3	25.1	28.3	33.8	38.6	42.8	44	46.9	51.2	58.7	56.8
COP		3.02	2.99	2.87	2.89	2.86	2.85	2.82	2.9	2.89	3.03	2.97	3	2.99
SCOP		3.99	3.99	3.66	3.73	3.71	3.58	3.66	3.68	3.54	3.69	3.58	3.68	3.68
Weight	kg	545	545	585	585	675	755	760	1050	1090	1100	1120	1155	1270
Sound power	dB(A)	73	74	75	75	79	82	83	-	82	86	83	87	85
									3340	3540	3340	3540	3340	354
limensions [LxHxD]	mm		20)90x1740x11	80		2640x17	40x1180	x1740 x1180	x1740 x1180	x1740 x1180	x1740 x1180	x1740 x1180	x174 x118
		17/	10.0	107	010	01/	949	966	070	074	207	79/	764	70/
TPS		174	192	194	212	214	242	244	272	274	294	324	364	394
	0°	174	Cold	user in wa	ater temp	erature 12	°C, ehylen	e glycol 2	0%					394
Full Free-Cooling temperature	°C	-	Cold	user In wa	ater temp -6.8	erature 12 -7	° C, ehylen -8	e glycol 2 -8.2	0% -7	-7.1	-7.7	-8.3	-11	-10.5
ull Free-Cooling temperature	°C kg		Cold -5 1720	user In wa -5.5 1750	a ter temp -6.8 1740	erature 12 -7 1760	° C, ehylen -8 1870	e glycol 2 -8.2 1870	0% -7 2285					
ull Free-Cooling temperature Veight	kg	-	Cold -5 1720 Cooling	user In wa -5.5 1750 :: User wa	ater temp -6.8 1740 ter values	erature 12 -7 1760 s 12/7°C, 3	° C, ehylen -8 1870 5°C outsid	e glycol 20 -8.2 1870 e air, 40%	D% -7 2285 & U.R.	-7.1 2285	-7.7 2317	-8.3 2352	-11 2402	-10. 358
full Free-Cooling temperature Weight Cooling capacity	kg kW	- - 166.2	Cold -5 1720 Cooling 189.1	user In wa -5.5 1750 g: User wa 188.4	ater temp -6.8 1740 ter values 207.6	erature 12 -7 1760 s 12/7°C, 3 211.2	° C, ehylen -8 1870 5°C outsid 230.1	e glycol 20 -8.2 1870 e air, 40% 232	0% -7 2285 6 U.R. 267.2	-7.1 2285 266	-7.7 2317 293.2	-8.3 2352 317.5	-11 2402 352	-10. 358 397.
Full Free-Cooling temperature Weight Cooling capacity Fotal absorbed power	kg	- - 166.2 54.2	Cold -5 1720 Cooling 189.1 65.4	user In wa -5.5 1750 3: User wa 188.4 65.4	ater temp -6.8 1740 ter values 207.6 73.9	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5	° C, ehylen -8 1870 5°C outsid 230.1 82.8	e glycol 20 -8.2 1870 e air, 40% 232 85.2	0% -7 2285 6 U.R. 267.2 90.3	-7.1 2285 266 89.5	-7.7 2317 293.2 104.9	-8.3 2352 317.5 120.5	-11 2402 352 136.9	-10. 358 397. 153.
Full Free-Cooling temperature Weight Cooling capacity Fotal absorbed power	kg kW	- - 166.2 54.2 3.06	Cold -5 1720 Cooling 189.1 65.4 2.89	user In wa -5.5 1750 g: User wa 188.4 65.4 2.88	ater temp -6.8 1740 ter values 207.6 73.9 2.81	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5 2.72	° C, ehylen -8 1870 5°C outsid 230.1 82.8 2.78	e glycol 2 -8.2 1870 e air, 40% 232 85.2 2.72	0% -7 2285 6 U.R. 267.2 90.3 2.96	-7.1 2285 266 89.5 2.97	-7.7 2317 293.2 104.9 2.79	-8.3 2352 317.5 120.5 2.63	-11 2402 352 136.9 2.57	-10. 358 397. 153. 2.55
Full Free-Cooling temperature Weight Cooling capacity Fotal absorbed power ER SEER	kg kW	- - 54.2 3.06 4.62	Cold -5 1720 Cooling 189.1 65.4 2.89 4.31	user In wa -5.5 1750 g: User wa 188.4 65.4 2.88 4.28	ater temp -6.8 1740 ter values 207.6 73.9 2.81 4.37	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5 2.72 4.32	° C, ehylen -8 1870 5°C outsid 230.1 82.8 2.78 4.27	e glycol 21 -8.2 1870 e air, 40% 232 85.2 2.72 4.31	0% 2285 6 U.R. 267.2 90.3 2.96 4.61	-7.1 2285 266 89.5 2.97 4.6	-7.7 2317 293.2 104.9 2.79 4.25	-8.3 2352 317.5 120.5 2.63 4.23	-11 2402 352 136.9 2.57 4.15	-10. 358 397. 153. 2.55 4.21
Full Free-Cooling temperature Weight Cooling capacity Fotal absorbed power EER SEER SEER	kg kW	- - 166.2 54.2 3.06	Cold -5 1720 Cooling 189.1 65.4 2.89	user In wa -5.5 1750 g: User wa 188.4 65.4 2.88	ater temp -6.8 1740 ter values 207.6 73.9 2.81	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5 2.72	° C, ehylen -8 1870 5°C outsid 230.1 82.8 2.78	e glycol 2 -8.2 1870 e air, 40% 232 85.2 2.72	0% -7 2285 6 U.R. 267.2 90.3 2.96	-7.1 2285 266 89.5 2.97	-7.7 2317 293.2 104.9 2.79	-8.3 2352 317.5 120.5 2.63	-11 2402 352 136.9 2.57	-10.1 358 397. 153. 2.55 4.20 5.22
ull Free-Cooling temperature Veight Cooling capacity Total absorbed power ER EER EER	kg kW kW	- - 54.2 3.06 4.62 5.43	Cold -5 1720 Cooling 189.1 65.4 2.89 4.31 5.18 1430	user in wa -5.5 1750 g: User wa 188.4 65.4 65.4 2.88 4.28 5.32 1460	ater temp -6.8 1740 ter values 207.6 73.9 2.81 4.37 5.13 1430	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5 2.72 4.32 5.19	°C, ehylen -8 1870 5°C outsid 230.1 82.8 2.78 4.27 5.32 1620	e glycol 20 -8.2 1870 e air, 40% 232 85.2 2.72 4.31 5.4 1620	0% -7 2285 6 U.R. 267.2 90.3 2.96 4.61 5.42 1943	-7.1 2285 266 89.5 2.97 4.6 5.51	-7.7 2317 293.2 104.9 2.79 4.25 5.29	-8.3 2352 317.5 120.5 2.63 4.23 5.1	-11 2402 352 136.9 2.57 4.15 5.21	-10.1 358 397. 153. 2.55 4.20 5.22
Full Free-Cooling temperature Weight Cooling capacity Fotal absorbed power EER SEER SEER SEPR Weight	kg kW kW	- - 54.2 3.06 4.62 5.43	Cold -5 1720 Cooling 189.1 65.4 2.89 4.31 5.18 1430	user in wa -5.5 1750 g: User wa 188.4 65.4 65.4 2.88 4.28 5.32 1460	ater temp -6.8 1740 ter values 207.6 73.9 2.81 4.37 5.13 1430	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5 2.72 4.32 5.19 1470	°C, ehylen -8 1870 5°C outsid 230.1 82.8 2.78 4.27 5.32 1620	e glycol 20 -8.2 1870 e air, 40% 232 85.2 2.72 4.31 5.4 1620	0% -7 2285 6 U.R. 267.2 90.3 2.96 4.61 5.42 1943	-7.1 2285 266 89.5 2.97 4.6 5.51	-7.7 2317 293.2 104.9 2.79 4.25 5.29	-8.3 2352 317.5 120.5 2.63 4.23 5.1	-11 2402 352 136.9 2.57 4.15 5.21	-10.1 358 397. 153. 2.59 4.28 5.22 309
Full Free-Cooling temperature Weight Cooling capacity Fotal absorbed power EER SEER SEER SEPR Weight Weight	kg kW kW	- - 54.2 3.06 4.62 5.43 1440	Cold -5 1720 Cooling 189.1 65.4 2.89 4.31 5.18 1430 Heating	user In wa -5.5 1750 g: User wa 188.4 65.4 2.88 4.28 5.32 1460 g: User wa	ater temp -6.8 1740 ter values 207.6 73.9 2.81 4.37 5.13 1430 ter values	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5 2.72 4.32 5.19 1470 s 40/45°C,	* C, ehylen -8 1870 5°C outsid 230.1 82.8 2.78 4.27 5.32 1620 7°C outsid	e glycol 20 -8.2 1870 e air, 40% 232 85.2 2.72 4.31 5.4 1620 e air, 89%	0% -7 2285 6 U.R. 267.2 90.3 2.96 4.61 5.42 1943 % U.R.	-7.1 2285 266 89.5 2.97 4.6 5.51 1943	-7.7 2317 293.2 104.9 2.79 4.25 5.29 1975	-8.3 2352 317.5 120.5 2.63 4.23 5.1 2010	-11 2402 352 136.9 2.57 4.15 5.21 2060	-10.1 3588 397. 153. 2.59 4.20 5.22 309 4444.
Full Free-Cooling temperature Weight Cooling capacity Total absorbed power EER SEER SEER Weight Thermal power Total absorbed power	kg kW kW kg kg	- - 54.2 3.06 4.62 5.43 1440 172.8	Cold -5 1720 Coolint 189.1 65.4 2.89 4.31 5.18 1430 Heatint 199.6	user In wa -5.5 1750 : User wa 188.4 65.4 2.88 4.28 5.32 1460 : User wa 199.3	ater temp -6.8 1740 ter value: 207.6 73.9 2.81 4.37 5.13 1430 ter value: 220.4	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5 2.72 4.32 5.19 1470 s 40/45°C, 226.2	 °C, ehylena -8 1870 5°C outsid 230.1 82.8 2.78 4.27 5.32 1620 7°C outsid 243.7 	e glycol 24 -8.2 1870 e air, 409 232 85.2 2.72 4.31 5.4 1620 de air, 89 247.4	0% -7 2285 6 U.R. 267.2 90.3 2.96 4.61 5.42 1943 6 U.R. 275.7	-7.1 2285 266 89.5 2.97 4.6 5.51 1943 278	-7.7 2317 293.2 104.9 2.79 4.25 5.29 1975 311	-8.3 2352 317.5 120.5 2.63 4.23 5.1 2010 342.1	-11 2402 352 136.9 2.57 4.15 5.21 2060 395.8	-10. 358 397. 153. 2.59 4.20 5.22 309 4444. 147.
Full Free-Cooling temperature Weight Cooling capacity Total absorbed power EER SEER SEER SEPR Weight Chermal power Total absorbed power COP	kg kW kW kg kg	- - 54.2 3.06 4.62 5.43 1440 172.8 59	Cold -5 1720 Cooling 189.1 65.4 2.89 4.31 5.18 1430 Heating 199.6 68.9	user In wa -5.5 1750 : User wa 188.4 65.4 2.88 4.28 5.32 1460 : User wa 199.3 69.5	ater temp -6.8 1740 ter values 207.6 73.9 2.81 4.37 5.13 1430 ter values 220.4 75.4	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5 2.72 4.32 5.19 1470 s 40/45°C, 226.2 79.1	° C, ehylen -8 1870 5°C outsid 230.1 82.8 2.78 4.27 5.32 1620 7°C outsid 243.7 82.8	e glycol 2/ -8.2 1870 e air, 40% 232 85.2 2.72 4.31 5.4 1620 16 air, 89% 247.4 85.5	0% -7 2285 6 U.R. 267.2 90.3 2.96 4.61 5.42 1943 6 U.R. 275.7 91.4	-7.1 2285 266 89.5 2.97 4.6 5.51 1943 278 93	-7.7 2317 293.2 104.9 2.79 4.25 5.29 1975 311 105.7	-8.3 2352 317.5 120.5 2.63 4.23 5.1 2010 342.1 118.5	-11 2402 352 136.9 2.57 4.15 5.21 2060 395.8 132.7	-10. 358 397. 153. 2.55 4.25 5.22 309 4444 147. 3.0
iull Free-Cooling temperature Veight Cooling capacity Iotal absorbed power EER EER EER Veight Veight Thermal power Iotal absorbed power COP ECOP Veight	kg kW kW kg kg	- - - 3.06 4.62 5.4.3 1440 172.8 59 2.93	Cold -5 1720 Cooling 189.1 65.4 2.89 4.31 5.18 1430 Heating 199.6 68.9 2.9	user In wa -5.5 1750 3: User wa 188.4 65.4 2.88 4.28 5.32 1460 3: User wa 199.3 69.5 2.87	ater temp -6.8 1740 ter value: 207.6 73.9 2.81 4.37 5.13 1430 ter value: 220.4 75.4 2.92	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5 2.72 4.32 5.19 1470 s 40/45°C, 3 226.2 79.1 2.86	°C, ehylen -8 1870 5°C outsid 230.1 82.8 2.78 4.27 5.32 1620 7°C outsid 243.7 82.8 2.94	e glycol 2 -8.2 1870 e air, 40% 232 85.2 2.72 4.31 5.4 1620 le air, 89% 247.4 85.5 2.89	0% -7 2285 6 U.R. 267.2 90.3 2.96 4.61 5.42 1943 6 U.R. 275.7 91.4 3.02	-7.1 2285 266 89.5 2.97 4.6 5.51 1943 278 93 2.99	-7.7 2317 293.2 104.9 2.79 4.25 5.29 1975 311 105.7 2.94	-8.3 2352 317.5 120.5 2.63 4.23 5.1 2010 342.1 118.5 2.89	-11 2402 352 136.9 2.57 4.15 5.21 2060 395.8 132.7 2.98	-10. 358 397. 153. 2.55 4.25 5.22 309 4444. 147. 3.00 3.56
TPS Full Free-Cooling temperature Weight Cooling capacity Total absorbed power EER SEER SEER SEPR Weight Thermal power Total absorbed power COP SCOP Weight Sound power	kg kW kW kg kW	- - 54.2 5.4.2 5.4.3 1440 172.8 59 2.93 3.32	Cold -5 1720 Cooling 189.1 65.4 2.89 4.31 5.18 1430 Heating 199.6 68, 2.9 3.49	user In wa -5.5 1750 : User wa 188.4 65.4 2.88 4.28 5.32 1460 ; User wa 199.5 69.5 2.87 3.41	ater temp -6.8 1740 ter value: 207.6 73.9 2.81 4.37 5.13 1430 ter value: 220.4 75.4 2.20.4 75.4 2.20.4 75.4 2.20.5	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5 2.72 4.32 5.19 1470 s 40/45°C, 226.2 79.1 2.86 3.49	 ²C. ehylen -8 1870 5°C outsid 230.1 82.8 2.78 4.27 5.32 1620 7°C outsid 243.7 82.8 2.94 3.66 	e glycol 22 -8.2 1870 e air, 40% 232 85.2 2.72 4.31 5.4 1620 de air, 89% 247.4 85.5 2.89 3.62	0% -7 2285 5 U.R. 267.2 90.3 2.96 4.61 5.42 1943 6 U.R. 275.7 91.4 3.02 3.66	-7.1 2285 266 89.5 2.97 4.6 5.51 1943 278 93 2.99 3.54	-7.7 2317 293.2 104.9 2.79 4.25 5.29 1975 311 105.7 2.94 3.5	-8.3 2352 317.5 120.5 2.63 4.23 5.1 2010 342.1 118.5 2.89 3.54	-11 2402 352 136.9 2.57 4.15 5.21 2060 395.8 132.7 2.98 3.62 2191 94	-10.1 3580 397. 153. 2.55 4.28 5.22 3090 4444. 147. 3.00 3.56 3190 97
Full Free-Cooling temperature Weight Cooling capacity Total absorbed power EER SEER SEER SEPR Weight Thermal power Total absorbed power COP SCOP Weight	kg kW kW kg kg	- - 3.06 4.62 5.4.3 1440 172.8 59 2.93 3.32 1495	Cold -5 1720 Cooling 189.1 65.4 2.89 4.31 5.18 1430 Heating 199.6 68.9 2.9 3.49 1485 92	user In wa -5.5 1750 : User wa 188.4 65.4 2.88 4.28 5.32 1460 : User wa 199.3 69.5 2.87 3.41 1515	ater temp -6.8 1740 207.6 73.9 2.81 4.37 5.13 1430 ter values 220.4 75.4 2.92 3.55 1485 92	erature 12 -7 1760 s 12/7°C, 3 211.2 77.5 2.72 4.32 5.19 1470 s 40/45°C, 3 226.2 79.1 2.86 3.49 1530	 ²C, ehylent -8 1870 S^oC outsid 230.1 82.8 2.78 4.27 5.32 1620 7^oC outsid 243.7 82.8 2.94 3.66 1690 94 	e glycol 2 -8.2 1870 e air, 40% 232 85.2 2.72 4.31 5.4 1620 le air, 89% 247.4 85.5 2.89 3.62 1690	0% -7 2285 6 U.R. 267.2 90.3 2.96 4.61 5.42 1943 6 U.R. 275.7 91.4 3.02 3.66 2015	-7.1 2285 266 89.5 2.97 4.6 5.51 1943 2.97 83 2.99 3.54 2.54 2015 94	-7.7 2317 293.2 104.9 2.79 4.25 5.29 1975 311 105.7 2.94 3.5 2050	-8.3 2352 317.5 2.63 4.23 5.1 2010 342.1 118.5 2.89 3.54 2101	-11 2402 352 136.9 2.57 4.15 5.21 2060 395.8 132.7 2.98 3.62 2191	-10. 358 397. 153. 2.53 4.28 5.22 309 4444. 147. 3.0 3.59 319

Also available with 60 Hz power supply | Calculated with 20% glycol. The Free-Cooling versions always feature a refrigeration configuration consisting of one compressor per circuit or dual tandem on two circuits | Features referred to the standard set-up. If not available, they refer to the Low Noise or Quiet set-up | Data declared with use of R410A refrigerant

SERVICES



DATA CENTER INDUSTRIAL

CLASS A CHILLERS AND HEAT PUMPS AIR CONDENSED WITH SCROLL COMPRESSORS

The new TSL range chillers and heat pumps are air/water units in energy class A for both cooling and heating, available for use with R410A refrigerant or, in the "A2L" version, with low environmental impact R454B refrigerant. The TSL range is designed to manage the **conditioning of industrial** plants and thermal loads in technological applications, where 24/7 reliability in all working conditions, one of the assets of these units, is a critically important requirement. The TSL range uses latest generation Scroll compressors, shell and tube water heat exchangers optimised for use with high pressure refrigerants (R410A/R454B) and axial fans suitable for outdoor installation.

Reliability: shell and tube

The use of shell and tube heat exchangers with exchange water flow on the shell side implies **a lower risk of blocking the flow** due to exchanger clogging compared to units with plate heat exchangers. This is thanks to the larger throughsections, the exchanged power being the same. Additionally, the dual-pass heat exchanger **ensures** high heat exchange efficiency both in "chiller" and in "heat pump" modes, with lower consumption figures for the user.

- 3 different soundproofing setups available: Standard, Low Noise and Super Low Noise
- Electric control panel with IP55 protection rating
- High power density units in both chiller and heat pump modes
- Radial EC motor fans (optional)
- Electronic expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable microprocessor control with proprietary software
- Compliance with ERP regulations

CATALOGUE CHILLERS AND HEAT PUMPS

Easy maintenance

To carry out maintenance of the condensing coil manifolds and refrigeration circuit components, which are located behind the electrical panel, the TSL range is supplied as standard with the Hi-Rail sliding guide. This allows **the control panel to be easily removed**, resulting in **extra space for unscheduled maintenance**, without impacting the footprint required for normal operation of the unit.

Maximised energy efficiency

The units of the TSL range belong to the energy efficiency class A, both in the chilling only version and in the heat pump version. This is thanks to a careful selection of internal components, which also includes the adoption of innovative high efficiency Scroll compressors with direct start, permanent magnet motor technology. The high modulation range guaranteed by the multi-Scroll technology allows cooling/heating requirements to be met at any time, minimising energy waste and increasing seasonal efficiency.

TSL		294FS	324FS	374FS	404FS	454FS	496FS	556FS	596FS	636FS	676FS	748FS	808FS	868FS	900FS
		User	vater ten	perature	12/7°C 2	0% ethyl	ene glyca	ol, outside	air 35°C	, 40% R.H					
Cooling capacity Total absorbed power EER	kW kW	276.9 89.7 3.09	319.4 105.8 3.02	354.2 118.3 2.99	383.2 129.2 2.97	422.9 150.4 2.81	478.9 155.8 3.07	545.6 179.4 3.04	585.7 195.8 2.99	608.1 205.4 2.96	648.6 221.1 2.93	725.3 235.4 3.08	791.8 258.1 3.07	848.6 270.8 3.13	910.9 299.7 3.04
Sound power Sound power [Low noise] Dimensions [LxHxD]	dB(A) dB(A) mm	89 86 3865×26	90 87 52×2256	90 87 486	90 87 65×2652×2	92 89 256	91 87 586	92 89 60×2652×2	91 88 256	93 90 6860×26	93 90 552×2256	93 90 7865×26	93 90 52×2256	94 91 8865×26	94 91 52×2256
TSL		294FS	324FS	374FS	404FS	454FS	496FS	556FS	596FS	636FS	676FS	748FS	808FS	868FS	900FS
			Ut	ility wate	r temper	ature 12/	7°C, ethy	lene glyca	ol 20%						
Full Free-Cooling temperature	°C	-8.7	-10.4	-6.4	-7.3	-8.6	-6.2	-8.1	-9.2	-6.7	-7.7	-6.8	-8.1	-7.1	-8
Sound power Sound power [Low noise] Dimensions [LxHxD]	dB(A) dB(A) mm	89 86 3865×26	90 87 52x2256	90 87 486	90 87 65×2652×2	92 89 256	91 87 586	92 89 60×2652×2	91 88 256	93 90 6860x26	93 90 352×2256	93 90 7865×26	93 90 52x2256	94 91 8865x26	94 91 52×2256
TSL								556CS							900CS
					_			utside air,	_						
Cooling capacity	kW	281.5	326.1	364.2	396.6	436.1	485.9	549.9	598.9	617.1	658.3	734.3	794.1	861.2	923.2
Total absorbed power EER	kW	88.7 3.18	104.2 3.13	117 3.11	127.6 3.11	148.6 2.93	153.7 3.16	176.9 3.11	193 3.1	202.7 3.04	218 3.02	232.5 3.16	254.7 3.12	267.6 3.22	295.7 3.12
SEER SEPR		4.9 5.46	4.99 5.62	4.82 5.38	4.87 5.49	5.03 5.74	5.02 5.56	5.09 5.64	5.18 5.79	5.06 5.67	5.14 5.75	4.77 5.53	4.81 5.58	4.88 5.65	4.84 5.71
Sound power Sound power [Low noise] Dimensions [LxHxD]	dB(A) dB(A) mm	89 86 3520×26	90 87 52×2256	90 87 452	90 87 20×2652×2	92 89 256	91 87 552	92 89 20×2652×2	91 88 256	93 90 6520×26	93 90 52×2256	93 90 7520×26	93 90 52×2256	94 91 8520×26	94 91 52×2256
TSL		294HS	324HS	374HS	404HS	454HS	496HS	556HS	596HS	636HS	676HS	748HS	808HS	868HS	900HS
			Heati	na: User v	vater valı	Jes 40/45	5°C. 7°C o	utside air	. 89% U.F						
Thermal power Total absorbed power SEER COP SCOP	kW kW	291.9 89.1 - 3.27 4.01	337 102.3 - 3.29 4.17	390.9 119.2 - 3.28 4.1	412.9 126 - 3.28 4.1	448.8 143.4 - 3.13 4.24	504.5 153.6 - 3.28 3.82	566 173.3 - 3.27 3.99	603.9 184.1 5.19 3.28	656.7 200.6 5.1 3.27	683.9 213.5 5.2 3.2	776.9 231.3 4.63 3.36	841 250.5 4.69 3.36	883.1 267.9 4.73 3.3	1003.8 295.1 4.63 3.4
Sound power Sound power [Low noise]	dB(A) dB(A)	89 86	90 87	90 87	90 87	92 89	91 87	92 88	91 87	93 89	93 89	93 90	93 89	94 90	95 91
Dimensions [LxHxD]	mm	3520×26	52×2256	452	20×2652×2	256	552	20×2652×2	256	6520×26	352×2256	908	35x2652x2	256	11085 x2652 x2256

20% Ethylene glycol | Also available with 60 Hz power supply | Data declared with use of R410A refrigerant

CHiRef

TAL

DATA CENTER INDUSTRIAL

MULTI-PROTOCOL Communication Interface

Ý

A2L READY

SERVICES

CLASS A CHILLERS AND HEAT PUMPS AIR CONDENSED WITH SCROLL COMPRESSORS

AXIAL FANS

PLATE HEAT

0

SCROLL Compressors

Ж

LOW GWP REFRIGERANT

283.2–1165.9 kW

CORROSION RESISTANT MATERIAL

A

CLASS A

The new TAL range chillers and heat pumps are air/water units in energy class A for both cooling and heating, available for use with R410A refrigerant or, in the "A2L" version, with low environmental impact R454B refrigerant. The TAL range is designed to manage the **conditioning of industrial plants and thermal loads in technological applications, where 24/7 reliability in all working conditions, one of the assets of these units, is a critically important requirement**. The TAL range uses latest generation Scroll compressors, braze-welded plate exchangers optimised for use with high pressure refrigerants (R410A/R454B) and axial fans suitable for outdoor installation.

- 3 different soundproofing setups available: Standard, Low Noise and Super Low Noise
- Electric control panel with IP55 protection rating
- High power density units in both chiller and heat pump modes
- Radial EC motor fans (optional)
- Electronic expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable microprocessor control with proprietary software
- Compliance with ERP regulations

CHiRef

CATALOGUE CHILLERS AND HEAT PUMPS

Easy maintenance

Dimensions [LxHxD]

To carry out maintenance of the condensing coil manifolds and refrigeration circuit components, which are located behind the electrical panel, the TAL range is supplied as standard with the Hi-Rail sliding guide. This allows **the control panel to be easily removed**, resulting in extra space for unscheduled maintenance, **without impacting the footprint required for normal operation of the unit.**

Plate heat exchangers

The TAL range uses braze-welded plate exchangers with asymmetrical channels, suitable for the use of high and medium pressure refrigerant gases. The configuration with asymmetrical channels **allows high exchange efficiencies to be reachedwhile maintaining pressure drops low** on the water side, **therefore reducing pumping costs** at both full and partial load.

Maximised energy efficiency

6860×2652×2256 7865×2652×2256 8865×2652×2256

x2652

x2256

The units of the TAL range fall within the **energy efficiency class A**, in both the chilling only version and the heat pump version. This is thanks to a careful selection of internal components, which also includes the adoption of **innovative high efficiency Scroll compressors with direct start, permanent magnet motor technology.** The high modulation range guaranteed by the multi-Scroll technology allows cooling/heating requirements to be met at any time, **minimising energy waste and increasing seasonal efficiency.**

TAL		294FS	324FS	374FS	404FS	454FS	496FS	556FS	596FS	636FS	676FS	748FS	808FS	868FS	900FS	1072FS
		User	water te	mperatu	re 12/7°	C 20% et	hylene g	lycol, ou	tside air	35°C, 40	% R.H.					
Cooling capacity	kW	283.2	316.9	366.2	392.9	433.7	476.3	532.1	580.3	621.3	642.9	738.9	781.8	831.4	900.4	1064.6
Total absorbed power	kW	87.3	102.9	115.1	126	147.4	152.7	176.6	193.6	201.1	216.6	229.7	251.8	264.5	293.2	352.7
EER		3.24	3.08	3.18	3.12	2.94	3.12	3.01	3	3.09	2.97	3.22	3.11	3.14	3.07	3.02
Sound power	dB(A)	89	90	90	90	92	91	92	91	93	93	93	93	94	94	95
Sound power [Low noise]	dB(A)	86	87	87	87	89	87	89	88	90	90	90	90	91	91	92
Dimensions [LxHxD]	mm	3865×26	52x2256	486	35x2652x2	2256	586	30x2652x2	2256	6860×26	352×2256	7865×26	652x2256	8865×26	652x2256	11270 x2652 x2256
TAL		294FS	324FS	374FS	404FS	454FS	496FS	556FS	596FS	636FS	676FS	748FS	808FS	868FS	900FS	1072FS
				Jtility wa	ter temp	erature	12/7°C, e	thylene	glycol 20	1%						
Full Free-Cooling temperature	°C	-8.9	-8.4	-4.6	-5.4	-7	-4.4	-6.1	-7.6	-5.3	-5.8	-5.3	-6.2	-4.6	-6.1	-6.1
Sound power	dB(A)	89	90	90	90	92	91	92	91	93	93	93	93	94	94	95
Sound power [Low noise]	dB(A)	86	87	87	87	89	87	89	88	90	90	90	90	91	91	92
																11270

TAL		294CS	324CS	374CS	404CS	454CS	496CS	556CS	596CS	636CS	676CS	748CS	808CS	868CS	900CS	1072CS
			Coo	ling: Use	r water v	alues 12/	7°C, 35°	C outsid	e air, 40%	% U.R.						
Cooling capacity	kW	286.1	319.8	370.1	397.8	450	482.7	539.7	588.7	629.9	662.1	746.6	791.3	841.2	911.8	1079.7
Total absorbed power	kW	86.2	101.9	114	124.4	145.3	150.3	173.7	190.5	198	213.2	226.8	248.1	261.1	289.2	347.2
EER		3.32	3.14	3.25	3.2	3.1	3.21	3.11	3.09	3.18	3.1	3.29	3.19	3.22	3.15	3.11
SEER		5.18	4.96	5.08	5.05	4.96	5.25	5.22	5.32	5.3	5.18	5.08	5.01	4.97	4.98	5.12
SEPR		5.67	5.65	5.61	5.62	5.6	5.68	5.69	5.78	5.7	5.61	5.75	5.7	5.62	5.76	5.72
Sound nower	dB(A)	89	90	٩N	90	92	91	92	91	93	93	93	93	94	94	95

4865×2652×2256

5860x2652x2256

Sound power [Low noise]	dB(A)	86	87	87	87	89	87	89	88	90	90	90	90	91	91	92
Dimensions [LxHxD]	mm	3520×26	52×2256	452	0×2652×2	256	552	0×2652×2	256	6520×26	52×2256	7520×26	52×2256	8520×26	52×2256	11085 ×2652 ×2256

TAL		294HS	324HS	374HS	404HS	454HS	496HS	556HS	596HS	636HS	676HS	748HS	808HS	868HS	900HS	1072HS
			Heat	ing: User	water v	alues 40	/45°C, 7'	°C outsid	le air, 89°	% U.R.						
Thermal power	kW	292.2	334.3	395.6	421.7	474.9	513.9	573.4	625.2	674.4	706.6	769.6	829.5	884.4	960.3	1165.9
Total absorbed power	kW	90.6	104.1	119.6	128.2	146.5	159.8	178.5	194.5	209.5	219.5	236.4	256.3	274.5	298.2	362.4
SEER		-	-	-	-	-	-	-	5.31	5.19	5.25	4.99	4.94	4.84	4.98	5.16
COP		3.22	3.21	3.31	3.29	3.24	3.22	3.21	3.21	3.22	3.22	3.26	3.24	3.22	3.22	3.22
SCOP		4.16	4.27	4.12	4.13	4.21	3.98	4.11	-	-	-	-	-	-	-	-
Sound power	dB(A)	89	90	90	90	92	91	92	91	93	93	93	93	94	95	96
Sound power [Low noise]	dB(A)	86	87	87	87	89	87	88	87	89	89	90	89	90	91	92
Dimensions [LxHxD]	mm	3520×26	52×2256	452	0x2652x2	256	552	0×2652×2	256	6520×26	52×2256	908	5×2652×2	256	11085 x2652 x2256	12930 ×2652 ×2256

20% Ethylene glycol | Also available with 60 Hz power supply | Data declared with use of R410A refrigerant

3865×2652×2256

mm

INDUSTRIAL SERVICES DATA CENTER **AIR CONDENSED** PL **CHILLERS AND HEAT PUMPS** WITH SCROLL COMPRESSORS 365.3-1199.3 kW 0 Ref MULTI-PROTOCOL Communication Interface SCROLL Compressors AXIAL FANS RESISTANT Ж PLATE HEAT LOW GWP REFRIGERAN A2L READY CHiRef

The new TPL range chillers and heat pumps are high power density air/water units available for use with R410A refrigerant or, in the "A2L" version, with low environmental impact R454B refrigerant. The TPL range is designed to manage **the conditioning of industrial plants and thermal loads in technological applications, where 24/7 reliability in all working conditions, one of the assets of these units, is a critically important requirement**. The TPL range uses latest generation Scroll compressors, braze-welded plate exchangers optimised for use with high pressure refrigerants (R410A/R454B) and axial fans suitable for outdoor installation.

- 3 different soundproofing setups available: Standard, Low Noise and Super Low Noise
- Electric control panel with IP55 protection rating
- High power density units in both chiller and heat pump modes
- Radial EC motor fans (optional)
- Electronic expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable microprocessor control with proprietary software
- Compliance with ERP regulations

CATALOGUE CHILLERS AND HEAT PUMPS

Plate heat exchangers

The TPL range uses braze-welded plate exchangers with asymmetrical channels, suitable for the use of high and medium pressure refrigerant gases. The configuration with asymmetrical channels allows **high exchange efficiencies to be reached while maintaining pressure drops low** on the water side - **reducing pumping costs** at both full and partial load.

Maximum efficiency at partial loads

The adoption of the multi-Scroll solution, the use of electronically controlled expansion valves, selection of plate heat exchangers, fan modulation and variable flow rate controlled with circulation pumps are all key features that make the **TPL range particularly efficient at partial loads.**

TPL		374F	414F	456F	486F	536F	616F	658F	748F	818F	900F	942F	1072F
		User w	ater tempe	rature 12/1	7°C 20% et	hylene glyd	col, outside	e air 35°C, 4	40% R.H.				
Cooling capacity Total absorbed power COP	kW kW	365.3 132.7 2.75	421 146.5 2.87	451.4 163.1 2.77	507.5 190.6 2.66	556.6 193.4 2.88	613.7 224.7 2.73	683.1 253.7 2.69	752.4 264.7 2.84	824.9 309.1 2.67	940.1 327.1 2.87	1042.4 371.3 2.81	1097.7 404.3 2.72
Sound power Sound power [Low noise]	dB(A) dB(A)	90 87	92 89	91 89	92 90	91 89	93 91	93 91	93 90	95 92	93 91	95 93	94 92
Dimensions [LxHxD]	mm	3415 ×2652 ×2256	4	415×2652×22	56	5415 ×2652 ×2256	5415×26	50×2256	6415×26	50×2256	7415×26	50×2256	8415 ×2650 ×2256
TPL		374F	414F	456F	486F	536F	616F	658F	748F	818F	900F	942F	1072F
			Utilit	y water ter	nperature	12/7°C, eth	ylene glyco	ol 20%					
Full Free-Cooling temperature	°C	-10.3	-6.6	-7.8	-9.8	-6.8	-8.3	-10.3	-8.5	-10.1	-9.4	-11.3	-9.4
Sound power	dB(A)	90	92	91	92	91	93	93	93	95	93	95	94
Sound power [Low noise]	dB(A)	87	89	89	90	89	91	91	90	92	91	93	92
Dimensions [LxHxD]	mm	3415 x2652 x2256	4	415x2652x22	56	5415 x2652 x2256	5415x26	50×2256	6415×26	50×2256	7415×26	50×2256	8415 x2650 x2256
TPL		374C	414C	456C	486C	536C	616C	658C	748C	818C	900C	942C	1072C
			Cooling:	User wate	r values 12	/7°C, 35°C	outside air	, 40% U.R.					
Cooling capacity	kW	369.7	426	457.6	515.3	565.2	622	694.9	764.2	837.9	957.7	1062	1112.9
Total absorbed power	kW	131.2	144.9	161.1	187.9	190.2	221.1	249.8	261	305	320.9	364.8	398.5
EER		2.82	2.94	2.84	2.74	2.97	2.81	2.78	2.93	2.75	2.98	2.91	2.79
SEER		4.81	4.87	4.95	4.96	5.14	5.02	4.71	4.85	4.71	4.96	5.09	5.05
SEPR		5.66	5.69	5.75	5.67	5.87	5.7	5.71	5.9	5.73	6.01	5.95	6
Sound power	dB(A)	90	92	91	92	91	93	93	93	95	93	95	94
Sound power [Low noise]	dB(A)	87	89	89	90	89	91	91	90	92	91	93	92
Dimensions [LxHxD]	mm	3065 x2652 x2256	4()65×2652×22	56	5065 ×2652 ×2256	5065 ×2650 ×2256	5060 x2650 x2256	6060×26	50x2256	7060×20	350×2256	8060 ×2650 ×2256
TPL		374H	414H	456H	486H	536H	616H	658H	748H	818H	900H	942H	1072H
			Heating:	User water	values 40	/45°C, 7°C	outside aiı	r, 89% U.R.					
Thermal power	kW	391.8	476.4	511.6	578.4	601	679.4	734.6	769.2	855.8	997.6	1114.5	1199.3
Total absorbed power	kW	130.8	150.6	161.7	181.8	199.6	226.1	236	254.3	286.2	322.5	358.4	394.1
SEER		-	-	-	-	5.14	5.02	4.71	4.81	4.67	4.71	4.85	5.13
COP		3	3.16	3.16	3.18	3.01	3	3.11	3.02	2.99	3.09	3.11	3.04
SCOP		4.03	4.06	3.98	4.05	-	-	-	-	-	-	-	-
Sound power	dB(A)	90	92	91	92	91	93	93	93	95	94	95	94
Sound power [Low noise] Dimensions [LxHxD]	dB(A) mm	87 3065 x2652	89	89))65×2652×22	90 56	89 5065 x2652	91 5065 x2650	91 5060 x2650	90 6635x26	92 50×2256	91 8635x26	93 950x2256	92 10635 ×2650
		x2052 x2256		,		x2052 x2256	x2050	x2050	0000720	0072200	0000720	,00x2200	x2256

 $20\%\ Ethylene\ glycol\,|\, Also\ available\ with\ 60\ Hz\ power\ supply\,|\, Data\ declared\ with\ use\ of\ R410A\ refrigerant$

CHiRef

www.hiref.it

SERVICES

HPS / MPS

INDUSTRIAL

MULTI-PROTOCOL Communication Interface

REVERSIBLE AND MULTIPURPOSE AIR CONDENSED HEAT PUMPS FOR LOW OUTDOOR TEMPERATURES

36.3-202.2 kW

AXIAL FANS

PLATE HEAT

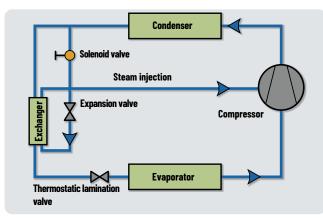
EVI SCROLL COMPRESSORS


HPS is the HiRef range of air-to-water multipurpose reversible heat pumps designed for operation in very cold climates. The use of compressors with EVI steam injection technology allows the production of hot water up to 65 °C and operation with outdoor temperatures down to -20 °C. This is combined with special focus on Low Noise (the "Low-Noise" silenced version is supplied as standard) and the use of different refrigeration circuit architectures to meet the needs of many different system applications.

Efficiency and reliability in line with system requirements

- The available refrigerating circuit configurations have been designed to ensure, also
- simultaneously, **redundancy and efficiency**

at partial loads. More specifically, the units - depending on the size of the machine and on specific plant engineering requirements consist of two compressors on two circuits for high system redundancy or four compressors (double tandem) on two circuits for a system that is simultaneously redundant and efficient at partial loads.



Production of hot water up to 65 °C

The units of the HPS range are capable of **producing water at 65°C**, as well as operating with outdoor air temperatures down **to -20°C**.

- Refrigerant R410A
- EVI compressors with steam injection
- Electronically controlled expansion valve
- "Cold" start Smart Kit configurable on request, to manage any mixing systems
- Hydrophilic coated coils with wider fin pitch
- Defrost ice disposal chutes with heating elements
- Optional EC electronic switching fans
- Available in multipurpose version for 2 and 4 pipe systems

CATALOGUE CHILLERS AND HEAT PUMPS

Units optimised for climates with T down to -20°C

The Scroll compressors of the HPS range use **steam injection technology:** a light flow of refrigerant in a medium-pressure vapour state is "injected" into the coils in the compression chamber. This system allows for both **an increase in the cooling** (and therefore, also the heating) **capacity and efficiency and, above all, an extension of the operating range of the heat pump;** this makes of the HPS range the ideal solution in case of extremely low outdoor temperatures.

Extra low noise

All units in the HPS range are, as standard, **"Low Noise"**, which means fan speed is controlled, anti-vibration piping is used on the refrigeration circuit, and the compressors and pumping kit are compartmentalised in a box lined with soundproofing material. **All this ensures minimum noise emissions throughout the system.**

Smart Defrost System

A factor that heavily weighs on the costs of managing the entire plant is finned pack evaporator defrosting during wintertime operation. The (patented) Smart Defrost System by HiRef is able to identify a decline in the exchanger performance caused by the formation of ice and to minimise the duration of the defrosting process. The use of coils treated with hydrophilic surface coating **speeds up the** defrosting process so that melting of just the first, thin ice layer on the fins is only required for cleaning.

HPS		041HL	051HL	071HL	081HL	101HL	134HL	164HL	204HL
		Co	oling: User water	values 12/7°C,	35°C outside air	, 40% U.R.			
Cooling capacity	kW	36.3	45.5	61.8	68.9	79.2	121.5	136.9	175.2
Total absorbed power	kW	12	15	19.7	23.3	25.4	40.2	48.9	62.5
EER		3.03	3.03	3.14	2.96	3.12	3.02	2.8	2.8
		Hea	ting: User wate	values 40/45°	C, 7°C outside ai	r, 89% U.R.			
Thermal power	kW	43.6	53.9	72.5	81.6	92.2	140.3	158	202.2
Total absorbed power	kW	13	15.7	21.2	24.4	26.8	41.1	48.6	61.5
COP		3.34	3.42	3.41	3.35	3.44	3.41	3.25	3.29
SCOP		2.83	2.96	2.91	2.9	2.91	3.2	2.85	3.05
Sound power	dB(A)	79	78	80	81	81	80	82	82
Dimensions [LxHxD]	mm	2440x17	35x1183	2792×17	735×1183	3540x1679x1183	3538×18	84x1653	3538x2284x1653

Also available with 60 Hz power supply

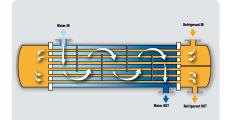
MPS		041PL	051PL	071PL	081PL	101PL	134PL	164PL	204PL
		Coo	oling: User water	r values 12/7°C,	35°C outside ai	r, 40% U.R.			
Cooling capacity	kW	39.5	49.1	66.7	73.9	86	131	148.8	188.1
Total absorbed power	kW	12	15.1	19.6	23.4	25.5	40.1	49	62.5
EER		3.29	3.24	3.41	3.16	3.37	3.27	3.03	3.01
	Т	otal Recovery: I	Jtility water tem	perature 12/7°C	C, Recovery wat	er temperature 4()/45°C		
Cooling capacity	kW	38.5	47.8	64.9	72	83.7	127.3	144.4	182.2
Thermal power	kW	51.135	63.6	85.8	96.89	110.4	170.3	196.46	248.3
Total absorbed power	kW	13.3	16.7	22	26.2	28.2	45.3	54.8	69.6
TER		6.74	6.67	6.85	6.45	6.89	6.57	6.22	6.19
		Неа	ting: User water	values 40/45°	C, 7°C outside ai	ir, 89% U.R.			
Thermal power	kW	43.6	53.9	72.5	81.6	92.2	140.3	158	202.2
Total absorbed power	kW	13	15.7	21.2	24.4	26.8	41.1	48.6	61.5
COP		3.34	3.42	3.41	3.35	3.44	3.41	3.25	3.29
SCOP		2.83	2.96	2.91	2.9	2.91	3.2	2.85	3.05
Sound power	dB(A)	79	78	80	81	81	80	82	82
Dimensions [LxHxD]	mm	2440x17	35x1183	2792×1	735×1183	3540×1679×1183	3538×1	384x1653	3538×2284×165

Also available with 60 Hz power supply

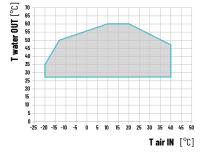
SERVICES

CHiRef

MPL


MULTIPURPOSE CLASS A HEAT PUMPS AIR CONDENSED WITH SCROLL COMPRESSORS

248.6-1069.3 kW



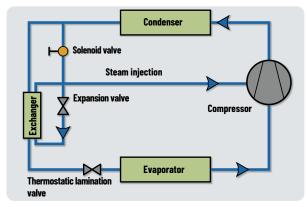
The new MPL range multipurpose units are air/water units in energy class A for both cooling and heating, available for use with R410A refrigerant or, in the "A2L" version, with low environmental impact R454B refrigerant. The MPL range is designed to manage **the conditioning of industrial plants and thermal loads in technological applications, where 24/7 reliability in all working conditions, one of the assets of these units, is a critically important requirement.** The MPL range uses latest generation Scroll compressors, shell and tube water heat exchangers optimised for use with **high pressure refrigerants (R410A/R454B)** and axial fans suitable for outdoor installation.

Reliability: shell and tube

The use of shell and tube heat exchangers with exchange water flow on the shell side implies **a lower risk of blocking the flow due to exchanger clogging compared to units with plate heat exchangers.** This is thanks to the larger throughsections, the exchanged power being the same. Additionally, the dual-pass heat exchanger **ensures high heat exchange efficiency** both in "chiller" and in "heat pump" modes, with **lower consumption figures for the user and easier transport and installation.**

- 3 different soundproofing setups available: Standard, Low Noise and Super Low Noise
- Electric control panel with IP55 protection rating
- High power density units in both chiller and heat pump modes
- Radial EC motor fans
 (optional)
- Electronic expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable microprocessor control with proprietary software
- Compliance with ERP regulations

CATALOGUE CHILLERS AND HEAT PUMPS


Easy maintenance

To carry out maintenance of the condensing coil manifolds and refrigeration circuit components, which are located behind the electrical panel, the MPL range is supplied as standard with the Hi-Rail sliding guide. This allows **the control panel to be easily removed**, resulting in **extra space for unscheduled maintenance, without impacting the footprint** required for normal operation of the unit.

Smart defrosting

A factor that heavily weighs on the costs of managing the entire plant is finned coil defrosting during wintertime operation. The special management of the defrosting cycle of MPL units **minimises the time to completion and ensures that defrosting is only performed when strictly necessary, guaranteeing greater heating efficiency.** The presence of two completely independent thermodynamic circuits ensures **uninterrupted operation** also during the defrosting phase, with practically no thermal discomfort for the user.

Units optimised for climates with T down to -20° C

The Scroll compressors of the MPL range use **steam injection technology:** a light flow of refrigerant in a medium-pressure vapour state is "injected" into the coils in the compression chamber. This system allows for both **an increase in the cooling** (and therefore, also the heating) **capacity and efficiency and, above all, an extension of the operating range of the heat pump;** this makes of the MPL range the ideal solution in case of extremely low outdoor temperatures.

Maximised energy efficiency

The units of the MPL range fall within the energy efficiency class A, both in cooling and in heating mode. This is thanks to a **careful** selection of internal components, which also includes the adoption of innovative high efficiency Scroll compressors with direct start, permanent magnet motor technology. The high modulation range guaranteed by the multi-Scroll technology allows cooling/ heating requirements to be met at any time, **minimising energy** waste and increasing seasonal efficiency. The high degree of partial load operation (up to 11% of the rated power), combined with water flow rate modulation (up to 20% of the nominal flow) allows operating costs and system maintenance costs to be reduced.

Configurability of hydraulic connections

To facilitate installation, especially when replacing existing units, the MPL range is available **with different configurations of hydraulic connections.**

They can be both on the right or left side, two on the right and two on the left side, or all on the back of the unit.

MPL		294PS	374PS	404PS	454PS	494PS	556PS	596PS	636PS	676PS	748PS	808PS	868PS	294PQ	374PQ	404PQ	454PQ	494PQ	556PQ	596PQ	636PQ	676PQ	748PQ	808PQ	868PQ
				Co	oling	User	wate	er valu	ies 12	/7°C,	35°C	outsi	de air	, 40%	U.R.										
Cooling capacity	kW	251.8	319.8	408	429.4	492.4	472.2	533	619.8	636.1	731	816.1	837.5	249.8	358.7	410.3	435.9	488	474.8	597.5	612.7	627.9	724.2	807.7	829
Total absorbed power	kW	72.5	92.4	127.1	138.2	150.5	140.6	168.6	194.3	202.1	219.3	254.1	265.2	72.7	111.1	122.1	131	153.1	136.9	191.2	199.7	208.3	222	258.6	270.2
EER		3.47	3.46	3.21	3.11	3.27	3.36	3.16	3.19	3.15	3.33	3.21	3.16	3.44	3.23	3.36	3.33	3.19	3.47	3.12	3.07	3.02	3.26	3.12	3.07
		C	oolin	g: Util	ity wa	ater to	empe	rature	e 12/7	°C, Re	ecove	ry wa	ter te	mper	ature	40/4	5°C								
Cooling capacity	kW	248.6	315.6	409	432.8	487.6	468.4	533.1	614.5	631.2	728.6	818.1	842	248.6	359.5	409	432.8	487.6	468.4	597.7	614.5	631.2	728.6	818.1	842
Thermal power	kW	313.2	398.4	518.7	550.9	623.3	594	680.2	789.8	813.2	919.4	1037.1	1069.3	313.2	456.6	518.7	550.9	623.3	594	766.4	789.8	813.2	919.4	1037.1	1069.3
Total absorbed power	kW	68.6	88.1	117.3	126.4	145.9	134.5	158.3	189.7	197.1	203.4	234.1	243.1	68.6	103.8	117.3	126.4	145.9	134.5	182.3	189.7	197.1	203.4	234.1	243.1
				He	ating	User	wate	r valu	ies 4() /45 °(C, 7°C	outsi	de ai	r, 89%	U.R.										
Thermal power	kW	254.5	345.2	444.9	471.2	524.1	494.2	565.6	669.9	688.4	775.9	870.4	895.3	248.9	389	434.5	460	522.3	501.8	648	666.3	684.6	777.5	873.4	898.9
Total absorbed power	kW	73.9	97.8	126.4	135.7	157.1	146.7	169.8	202.8	210	223.2	253.1	262.3	72.1	110.9	124.4	136.2	154.6	146.3	193	200.1	207.3	219	249	258
COP		3.45	3.53	3.52	3.47	3.34	3.37	3.33	3.3	3.28	3.48	3.44	3.41	3.45	3.51	3.49	3.38	3.38	3.43	3.36	3.33	3.3	3.55	3.51	3.48
Sound power	dB(A)	84	89	85	90	85	90	87	92	85	91	86	92	85	91	87	93	87	93	88	93	87	93	88	94
Dimensions [LxHxD]	mm	35 ×26 ×22	680		45	20 x 26	80 x 22	256			55	20 x 26	80 x 22	256		65	20 x 26	80 x 22	256		90	85 x 26	80 x 22	56	

Hot user Out water temperature 45°C | Cold user In water temperature 12°C | Cold user Out water temperature 7°C | Hot user In water temperature 40°C

CHiRef

www.hiref.it

The MPA units are multipurpose air/water units in energy class A for both cooling and heating, available for use with R410A refrigerant or, in the "A2L" version, with low environmental impact R454B refrigerant. The MPA range is designed to manage **the conditioning of industrial plants and thermal loads in technological applications where full 24/7 reliability in all working conditions is a requirement**. The MPA range uses latest-generation Scroll compressors, braze-welded plate exchangers optimised for use with high pressure refrigerants (R410A/R454B) and axial fans suitable for outdoor installation.

- 3 different soundproofing setups available: Standard, Low Noise and Super Low Noise
- Available versions: multipurpose for 2-pipe system (M) and multi-purpose for 4-pipe system (P)
- High power density units in both chiller and heat pump modes
- Radial EC motor fans (optional)
- Electronic expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable microprocessor control with proprietary software
- Compliance with ERP regulations

CATALOGUE CHILLERS AND HEAT PUMPS

Plate heat exchangers

The MPA range uses braze-welded plate exchangers with asymmetrical channels, suitable for the use of high and medium pressure refrigerant gases. The configuration with asymmetrical channels allows **high heat exchange efficiencies to be reached while maintaining low pressure drops** on the water side - which results **in reduced pumping costs** at both full and partial load.

Maximised energy efficiency

The units of the MPA range fall within the energy efficiency class A, both in cooling and in heating mode. This is thanks to **a careful** selection of internal components, which also includes the adoption of **innovative high** efficiency Scroll compressors with direct start, permanent magnet motor technology. The high modulation range guaranteed by the multi-Scroll technology allows cooling/ heating requirements to be met at any time, minimising energy waste and increasing seasonal efficiency. The high degree of partial load operation (up to 11% of the rated power), combined with water flow rate modulation (up to 20% of the nominal flow) allows operating costs and system maintenance costs to be reduced.

Smart defrosting

A factor that heavily weighs on the costs of managing the entire plant is finned coil defrosting during wintertime operation. The special management of the defrosting cycle of MPAunits **minimises the time to completion and ensures that defrosting is only performed when strictly necessary,guaranteeing greater heating efficiency.** The presence of two completely independent thermodynamic circuits ensures **uninterrupted operation** also during the defrosting phase, with practically no thermal discomfort for the user.

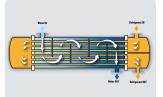
MPA		061PS	071PS	081PS	101PS	114PS	124PS	144PS	164PS	194PS	214PS	244PS
			Cooling: Us	ser water va	lues 12/7°C	, 35°C outsi	ide air, 40%	U.R.				
Cooling capacity	kW	61.2	75.3	88.3	102.4	118.2	127	149.6	162.5	187.7	222.6	250.4
Total absorbed power	kW	16.9	21.4	25.6	29.7	33.8	35.9	43.3	47.2	55.9	71	80
EER		3.62	3.53	3.44	3.45	3.5	3.54	3.46	3.44	3.36	3.14	3.13
SEER		4.7	4.55	4.52	4.66	5.14	5.06	5.05	5.15	5.15	5	4.96
SEPR		5.99	5.93	5.99	5.83	6.03	6.07	6.01	6.1	6.18	5.92	6.09
ESEER		4.5	4.37	4.34	4.47	4.88	4.79	4.78	4.86	4.88	4.72	4.67
		Cooling:	Utility wate	r temperatu	re 12/7°C, F	Recovery wa	ater tempera	ture 40/45	°C			
Cooling capacity	kW	59.1	74.5	89.2	101.2	116.9	124.2	150	162.5	191	227.2	258
Thermal power	kW	73.9	93	111	126.9	146.5	155.2	186.8	203.1	238.5	286.3	324.7
Total absorbed power	kW	15.6	19.5	23.1	27.2	31.5	32.8	39	43	50.6	62.9	71.1
TER		8.54	8.58	8.68	8.38	8.37	8.51	8.64	8.5	8.49	8.16	8.2
			Heating: Us	ser water va	lues 40/45	°C, 7°C outs	ide air, 89%	U.R.				
Thermal power	kW	61.5	75.5	87.2	102.5	123.9	130.4	149.9	163	186.9	227.6	265.1
Total absorbed power	kW	17.5	21.1	24.8	29.2	33.8	36.7	42.1	46.3	53.2	64.8	75.3
COP		3.51	3.57	3.51	3.51	3.67	3.55	3.56	3.52	3.51	3.51	3.52
SCOP		4	4.27	4.19	4.33	4.26	4.16	4.19	4.22	4.37	4.41	4.51
Sound power	dB(A)	81	83	83	86	83	84	86	86	87	88	89
Sound power [Low noise]	dB(A)	76	78	78	81	78	80	82	82	84	84	85
Dimensions [LxHxD]	mm	2	2792×1735×118	3	3540×1	735×1183	3	540×1846×165	13	3540×23	330×1653	4206 ×2330 ×1653

Also available with 60 Hz power supply | Cold user In water temperature 12°C | Cold user Out water temperature 7°C | Hot user In water temperature 40°C | Hot user Out water temperature 45°C

CHiRef

DATA CENTER INDUSTRIAL SERVICES **MULTIPURPOSE CLASS A HEAT PUMPS** MSL **AIR CONDENSED** WITH SCROLL COMPRESSORS 279.4-1425.3 kW C)HiRef E MULTI-PROTOCOL Communication Interface CORROSION RESISTANT MATERIAL AXIAL FANS A2L READY 0 ЪТ A ٨Ľ And in case of SCROLL COMPRESSORS SHELL AND TUBE LOW GWP CLASS A **(** FAST RESTART

The new MSL range multipurpose units are air/water units in energy class A for both cooling and heating, available for use with R410A refrigerant or, in the "A2L" version, with low environmental impact R454B refrigerant. The MSL range is designed to manage **the conditioning of industrial plants and thermal loads in technological applications, where 24/7 reliability in all working conditions, one of the assets of these units, is a critically important requirement. The MSL range uses latest generation Scroll compressors, shell and tube water heat exchangers optimised for use with high pressure refrigerants (R410A/R454B)** and axial fans suitable for outdoor installation.


- 3 different soundproofing setups available: Standard, Low Noise and Super Low Noise
- Electric control panel with IP55 protection rating
- High power density units in both chiller and heat pump modes
- Radial EC motor fans (optional)
- Electronic expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable microprocessor control with proprietary software
- Compliance with ERP regulations

CATALOGUE CHILLERS AND HEAT PUMPS

Maximised energy efficiency

The units of the MSL range fall within the energy efficiency class A, both in cooling and in heating mode. This is thanks to a careful selection of internal components, which also includes the adoption of innovative high efficiency Scroll compressors with direct start, permanent magnet motor technology. The high modulation range guaranteed by the multi-Scroll technology allows cooling/ heating requirements to be met at any time, **minimising energy** waste and increasing seasonal efficiency. The high degree of partial load operation (up to 11% of the rated power), combined with water flow rate modulation (up to 20% of the nominal flow) allows operating costs and system maintenance costs to be reduced.

Reliability: shell and tube

The use of shell and tube heat exchangers with exchange water flow on the shell side implies a lower risk of blocking the flow due to exchanger clogging compared to units with plate heat exchangers. This is thanks to the larger throughsections, the exchanged power being the same. Additionally, the dual-pass heat exchanger **ensures high** heat exchange efficiency both in "chiller" and in "heat pump" modes, with lower consumption figures for the user and easier transport and installation.

Configurability of hydraulic connections

To facilitate installation, especially when replacing existing units, the MSL range is available **with different configurations of hydraulic connections.** They can be both on the right or left side, two on the right and two on

the left side, or all on the back of the unit.

Smart defrosting

A factor that heavily weighs on the costs of managing the entire plant is finned coil defrosting during wintertime operation. The special management of the defrosting cycle of MSL units minimises the time to completion and ensures that defrosting is only performed when strictly necessary, guaranteeing greater heating efficiency. The presence of two completely independent thermodynamic circuits ensures uninterrupted operation also during the defrosting phase, with practically no thermal discomfort for the user.

Easy maintenance

To carry out maintenance of the condensing coil manifolds and refrigeration circuit components, which are located behind the electrical panel, the MSL range is supplied as standard with the Hi-Rail sliding guide. This allows **the control panel to be** easily removed, resulting in extra space for unscheduled maintenance, without impacting the footprint required for normal operation of

required for normal operation of the unit.

MSL		294PS	324PS	374PS	404PS	454PS	496PS	556PS	596PS	636PS	676PS	748PS	808PS	868PS	900PS	1072PS
			Cool	ling: User	water v	alues 12,	/7°C, 35°	°C outsid	e air, 40%	% U.R.						
Cooling capacity	kW	281.5	326.1	364.2	395.9	434.5	486.1	550	598.1	639.8	669.8	737.5	798.8	831.9	917.3	1146
Total absorbed power	kW	88.7	104.2	117	127.1	148	152.7	175.5	193	202.7	218.1	234.4	255.8	275.7	291	343.9
EER		3.18	3.13	3.11	3.12	2.94	3.18	3.13	3.1	3.16	3.07	3.15	3.12	3.02	3.15	3.33
SEER		4.91	4.9	4.82	4.88	4.77	5.01	5.12	5.19	5.08	5.08	4.91	4.96	4.83	4.98	4.76
SCOP		4.09	4.15	4.03	4.16	4.15	3.94	3.98	4.03	3.95	3.95	4.1	4.26	4.16	4.05	3.48
		Cooli	ng: Utility	y water t	emperat	ure 12/7'	°C, Reco	very wat	er tempe	rature 4	0/45°C					
Cooling capacity	kW	279.4	317.3	354.4	390	435.9	484.3	542.5	592	618.2	663.7	742	791.7	857.1	906	1129.4
Thermal power	kW	355.2	405.6	455.5	497.5	560.8	614.9	691.6	752.1	790.9	849	937.6	1004.1	1087.9	1156.4	1425.3
Total absorbed power	kW	81.5	95.4	109.8	115.1	134.1	139.4	159.6	172.2	186	200.2	212	230.8	248.6	270.3	319.5
SEER		4.91	4.9	4.82	4.88	4.77	5.01	5.12	5.19	5.08	5.08	4.91	4.96	4.83	4.98	4.76
TER		7.79	7.58	7.38	7.71	7.43	7.89	7.73	7.8	7.58	7.56	7.92	7.78	7.82	7.63	8
SCOP		4.09	4.15	4.03	4.16	4.15	3.94	3.98	4.03	3.95	3.95	4.1	4.26	4.16	4.05	3.48
			Heat	ing: User	water v	alues 40	/45°C, 7	°C outsid	le air, 89'	% U.R.						
Thermal power	kW	296.9	332.8	383.4	417.8	458.8	512.2	563.8	606.5	656.3	683.2	756.3	840.3	863.4	977.7	1183.2
Total absorbed power	kW	89.2	102.3	119.1	126	143.5	152.8	172.1	184.3	200.6	213.7	231.2	250.5	267.7	294.8	349.4
SEER		4.91	4.9	4.82	4.88	4.77	5.01	5.12	5.19	5.08	5.08	4.91	4.96	4.83	4.98	4.76
COP		3.33	3.25	3.22	3.32	3.2	3.35	3.28	3.29	3.27	3.2	3.27	3.35	3.22	3.32	3.39
SCOP		4.09	4.15	4.03	4.16	4.15	3.94	3.98	4.03	3.95	3.95	4.1	4.26	4.16	4.05	3.48
Sound power	dB(A)	96	89	90	90	90	92	91	92	91	93	93	93	93	94	95
Sound power [Low noise]	dB(A)	92	86	87	87	87	89	87	88	87	89	89	90	89	90	91
Sound power [Super Low noise]	dB(A)	90	84	85	85	85	87	85	86	85	87	87	88	87	88	89
Dimensions [LxHxD]	mm	12930 ×2680 ×2256	3520×26	80x2256	452	0x2680x2	256	552	20x2680x2	2256	6520×26	80×2256	908	5x2680x2	256	11085 x2680 x2256

Hot user Out water temperature 45°C | Cold user In water temperature 12°C | Cold user Out water temperature 7°C | Hot user In water temperature 40°C

INDUSTRIAL SERVICES DATA CENTER **MULTIPURPOSE CLASS A** MLA **AIR CONDENSED HEAT PUMPS** WITH SCROLL COMPRESSORS 286.2-1430.6 kW C)HiRef E 5 MULTI-PROTOCOL Communication Interface CORROSION RESISTANT MATERIAL AXIAL FANS A2L READY 0 **(** ЪТ A SCROLL Compressors LOW GWP Refrigerant CLASS A FAST RESTART PLATE HEAT Exchanger

The MLA units are multipurpose air/water units in energy class A for both cooling and heating, available for use with R410A refrigerant or, in the "A2L" version, with low environmental impact R454B refrigerant. The MLA range is designed to manage **the conditioning of industrial plants and thermal loads in technological applications where full 24/7 reliability in all working conditions is a requirement**. The MLA range uses latest-generation Scroll compressors, brazewelded plate exchangers optimised for use with high pressure refrigerants (R410A/R454B) and axial fans suitable for outdoor installation.

- 3 different soundproofing setups available: Standard, Low Noise and Super Low Noise
- High power density units in both chiller and heat pump modes
- Radial EC motor fans (optional)
- Electronic expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable
 microprocessor control with
 proprietary software
- Compliance with ERP regulations

CATALOGUE CHILLERS AND HEAT PUMPS

Plate heat exchangers

The MLA range uses braze-welded plate exchangers with asymmetrical channels, suitable for the use of high and medium pressure refrigerant gases. The configuration with asymmetrical channels **allows high heat exchange efficiencies to be reached while maintaining low pressure drops** on the water side - which results in **reduced pumping costs at both full and partial load.**

Maximised energy efficiency

The units of the MLA range fall within the energy efficiency class A, both in cooling and in heating mode. This is thanks to a careful selection of internal components, which also includes the adoption of innovative high efficiency Scroll compressors with direct start,permanent magnet motor technology. The high modulation range guaranteed by the multi-Scroll technology allows cooling/heating requirements to be met at any time, **minimising energy** waste and increasing seasonal efficiency. The high degree of partial load operation (up to 11% of the rated power), combined with water flow rate modulation (up to 20% of the nominal flow) allows operating costs and system maintenance costs to be reduced.

Easy maintenance

To carry out maintenance of the condensing coil manifolds and refrigeration circuit components, which are located behind the electrical panel, the MLA range is supplied as standard with the Hi-Rail sliding guide. This allows **the control panel to be easily removed**, resulting in **extra space for unscheduled maintenance,without impacting the footprint** required for normal operation of the unit.

MLA		294PS	324PS	374PS	404PS	454PS	496PS	556PS	596PS	636PS	676PS	748PS	808PS	868PS	900PS	1072PS
			Cool	ing: User	water v	alues 12 <i>1</i>	7°C, 35°	C outsid	e air, 40%	% U.R.						
Cooling capacity	kW	288.8	322.9	374.8	401.8	448.1	487.3	545.7	593.8	617.9	663.4	756.8	804	840.4	942.3	1125
Total absorbed power	kW	86.6	102.1	114	125	144.6	150.8	173.8	191.4	198.6	214.2	228.5	249.7	270.6	283.8	335.1
EER		3.34	3.16	3.29	3.21	3.1	3.23	3.14	3.1	3.11	3.1	3.31	3.22	3.11	3.32	3.36
SEER		4.93	4.73	4.83	4.82	4.89	5.01	5.09	5.15	4.95	5.08	4.75	4.72	4.61	4.91	5
SCOP		4.01	3.96	4.07	4.2	4.26	3.93	4.13	4.01	3.93	4.01	3.83	4	3.93	3.81	3.8
		Coolii	ng: Utility	y water t e	emperat	ure 12/7°	°C, Recov	ery wate	er tempe	rature 4()/45°C					
Cooling capacity	kW	286.2	324.4	371	403.3	451	479.8	546.8	582.8	607.7	651.6	755.5	807	866.7	931.7	1126.8
Thermal power	kW	362.7	413.5	471.6	511.6	576.2	614.4	699.1	748.6	786.4	843.3	954.1	1023	1099.7	1181.8	1430.6
Total absorbed power	kW	81.4	95.1	107.5	115.7	134.3	144.6	164	178.9	193.1	207.8	212	230.9	249.5	267.8	327.5
SEER		4.93	4.73	4.83	4.82	4.89	5.01	5.09	5.15	4.95	5.08	4.75	4.72	4.61	4.91	5
TER		7.97	7.76	7.84	7.9	7.65	7.57	7.6	7.44	7.22	7.19	8.06	7.93	7.88	7.89	7.81
SCOP		4.01	3.96	4.07	4.2	4.26	3.93	4.13	4.01	3.93	4.01	3.83	4	3.93	3.81	3.8
			Heat	ing: User	water v	alues 40	/45°C, 7°	°C outsid	e air, 89'	% U.R.						
Thermal power	kW	292.4	323.5	406	441.2	481.8	505.4	556.7	597	653.1	694.4	777.7	861.8	886	975.8	1177.4
Total absorbed power	kW	86.5	99.6	114.6	122.6	140.2	153	170.8	185.9	202.3	216	225.9	245.1	262.4	285.2	347.5
SEER		4.93	4.73	4.83	4.82	4.89	5.01	5.09	5.15	4.95	5.08	4.75	4.72	4.61	4.91	5
COP		3.38	3.25	3.54	3.6	3.44	3.3	3.26	3.21	3.23	3.21	3.44	3.52	3.38	3.42	3.39
SCOP		4.01	3.96	4.07	4.2	4.26	3.93	4.13	4.01	3.93	4.01	3.83	4	3.93	3.81	3.8
Sound power	dB(A)	89	90	90	90	92	91	92	91	93	93	93	93	94	95	96
Sound power [Low noise]	dB(A)	86	87	87	87	89	87	88	87	89	89	90	89	90	91	92
Sound power [Super Low noise]	dB(A)	84	85	85	85	87	85	86	85	87	87	88	87	88	89	90
Dimensions [LxHxD]	mm	3520×26	80 x 2256	4520) x 2680 x 2	2256	552	0 x 2680 x 2	2256	6520 x 26	80 x 2256	908	5 x 2680 x 2	256	11085 ×2680 ×2256	12930 ×2680 ×2256

Also available with 60 Hz power supply | Cold user In water temperature 12°C | Cold user Out water temperature 7°C | Hot user In water temperature 40°C | Hot user Out water temperature 45°C

www.hiref.it

HWC / HWP

57.7-201.5 kW

SERVICES

WITH SCROLL COMPRESSORS For Indoor Installations

INDUSTRIAL

AIR CONDENSED CHILLERS AND HEAT PUMPS

HWC is the range of air-condensed liquid chillers with Scroll compressors for indoor installations. Four different versions (chiller, Free-Cooling chiller, reversible heat pump and multipurpose) and several power output rates are available. The compact frame makes these units highly versatile and suited to a wide range of system layouts. Sizing and selection of individual components seeks to contain energy consumption, aiming to optimise energy savings not just for individual chillers but for the entire system. The unit is suitable for installation in equipment rooms and can be ducted at both intake and delivery ends. The maximum working head available is 250 Pa.

The configurations available for the refrigeration circuit are:

EFFICIENCY PACK 1: Dual compressor and dual circuit unit, for a system with greater redundancy (only for Free-Cooling versions).

EFFICIENCY PACK 2: Dual compressor (tandem) on single circuit for greater efficiency at partial loads.

EFFICIENCY PACK 4: Four compressors (dual tandem) on dual circuit, for a redundant system that is efficient with low loads.

- 2 different soundproofing setups available: Standard and Low Noise
- Electric control panel with IP55 protection rating
- Radial EC motor fans
- Electronic expansion valve
- Easy accessibility thanks to the optimisation of the internal space
- Programmable microprocessor control with proprietary software
- Available with single or double pumping kit in timed rotation
- Compliance with ERP regulations

CATALOGUE CHILLERS AND HEAT PUMPS

Attention to detail and to low noise requirements

Scroll compressors are fitted on rubber feet that **dampen vibration and attenuate the noise transmitted to the various system parts.** On request, the compressor compartment can be lined with special sound absorbing material and the compressors encased in special insulating hoods **to reduce airborne noise emissions.**

All accessories on-board the machine

The special component layout, together with compact plate heat exchangers and Scroll compressors, ensures on one hand **easier access to carry out maintenance procedures** and on the other hand, **sufficient internal space available for fitting a wide range of accessories and hydraulic options.** The hydraulic circuit may include a dual shut-off pump, flow switch, tank, expansion tank and safety valve.

Maximum efficiency at partial loads

The adoption of a multi-Scroll solution, the use of electronically controlled expansion valves and plate heat exchangers and modulation of the compressors are all key features **that make the HWC range particularly efficient at partial loads.**

HWC		052CS	062CS	072CS	082CS	092CS	102CS	112CS	132CS	142CS	162CS	182CS	204CS
			Cooling:	User water	values 12	/7°C, 35°C	outside air,	40% U.R.					
Cooling capacity	kW	57.7	62	71	78.7	94.5	106.8	119.8	128.2	142	155.5	183	201.5
Total absorbed power	kW	18.5	23	25	28.7	33.8	39.6	42.6	47.1	55.2	63.8	68.5	82.2
EER		3.12	2.69	2.84	2.74	2.8	2.7	2.82	2.72	2.57	2.44	2.67	2.45
SEER		4.38	4.1	4.46	4.38	4.2	4.29	4.36	4.36	4.15	4.21	4.14	4.1
SEPR		5.29	5.26	5.32	5.33	5.27	5.22	5.42	5.3	5.11	5.05	5.24	5.15
Sound power	dB(A)	82	82	82	83	85	86	86	86	89	90	92	89
Dimensions [LxHxD]	mm		2000 x 11	00 x 2020		2400 x 11	00 x 2020		3090 x 110	00 x 2020		4090 x 11	00 x 2104

Calculated with 20% glycol. Free-Cooling versions always have a refrigerating configuration consisting of one compressor per circuit or a dual tandem arrangement on two circuits | Features referred to the standard set-up. If not available, these features are referred to the Low Noise or Super Low Noise set-ups | Also available with 60 Hz power supply | Data declared with use of R410A refrigerant

HWP		052PS	062PS	072PS	082PS	092PS	102PS	112PS	132PS	142PS	162PS	182PS	204PS
			Cooling:	User water	values 12/	7°C, 35°C	outside air,	40% U.R.					
Cooling capacity	kW	55.1	61.2	71	78.7	94.5	106	119.6	127.9	141.6	152.3	181.1	201.5
Total absorbed power	kW	19.9	23.1	25	28.7	33.8	39.7	42.5	47.1	55.1	63.6	68.4	82.2
EER		2.77	2.65	2.84	2.74	2.8	2.67	2.81	2.71	2.57	2.4	2.65	2.45
			Heating:	User water	values 40	/45°C, 7°C	outside air	, 89% U.R.					
Thermal power	kW	58	64.6	76.6	85.5	102.3	115.2	131.2	141.8	159.1	175.1	203.1	230.8
Total absorbed power	kW	21	23.9	26.6	29.3	36.3	41.1	44	48	53.2	59.7	68.4	77.8
COP		2.76	2.71	2.88	2.92	2.82	2.8	2.98	2.96	2.99	2.93	2.97	2.97
SCOP		3.2	3.23	3.27	3.37	3.22	3.23	3.42	3.46	3.46	3.5	3.4	3.44
Sound power	dB(A)	82	82	82	83	85	86	86	86	89	90	92	89
Dimensions [LxHxD]	mm		2000 x 11	00 x 2020		2400 x 11	00 x 2020		3090 x 110	00 x 2020		4090 x 11	00 x 2104

Data declared with use of R410A refrigerant | Calculated with 20% glycol. Free-Cooling versions always have a refrigerating configuration consisting of one compressor per circuit or a dual tandem arrangement on two circuits | Features referred to the standard set-up. If not available, these features are referred to the Low Noise or Super Low Noise set-ups | Also available with 60 Hz power supply

CHiRef

XTW

DATA CENTER VINDUSTRIAL

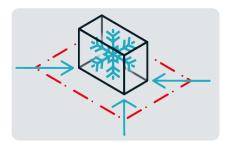
SERVICES

WATER-CONDENSED CHILLERS WITH OIL-FREE CENTRIFUGAL COMPRESSORS

XTW offers the most innovative, efficient water condensed chiller solution. A meticulous choice of components and equipment layout has led to **a solution with numerous advantages as regards both energy performance and noise emissions**. The special component layout lets users maximise **the advantages provided by the oil-free centrifugal compressor** (maximum heat exchange efficiency, ultra-high efficiency at partial loads, reduced inrush current) and **the compact flooded exchangers** (minimal approach temperature between water and refrigerant, lower load compared to traditional flooded units). The larger sizes have a double refrigerant circuit configuration **and high system efficiency and redundancy**.

New refrigerant R1234ze

XTW range water condensed chillers use **the new HFO refrigerant with low GWP** (GWPR1234ze=6) as part of a wider Green Technology approach. (Also available with R134a refrigerant.)


Top-class thermodynamic performance!

An effective combination of "oil-free" centrifugal compressor and flooded exchangers **allows maximisation of thermal exchange efficiency;** this is largely due to the absence of oil in the circuit and the reduced approach temperature between water and refrigerant (1K) as a result of no overheating in the evaporator. Cycle efficiency is enhanced by the centrifugal compressor, which features ultra-high efficiency at partial loads, and by the economiser, which ensures intermediate regenerative exchange in the circuit.

- Refrigerant R1234ze and R515B
- Also available with R134a refrigerant
- Refrigerant leak sensor
- Fast restart technology
- Water connections with Vic-Taulic quick couplings
- Modulation and supervision managed by the software
- Low noise set-up with compressor insulation
- Ductable electrical panel (separate electrical panel ventilation)

CHiRef

CATALOGUE CHILLERS AND HEAT PUMPS

Reduced footprint

Careful assessment of component layout and sizing **allows the system footprint to be reduced**, freeing up more space within the facility and during handling operations.

"Silent" layout

The piping layout is designed and sized to ensure low noise emissions under all working conditions and **mitigate Coriolis force acceleration**. The use of high performance sound absorbing material in the **Low Noise configuration** results in a further **reduction of the compressor noise emissions**.

Two-level evaporation

The evaporator with spray technology and single pass on the water side **guarantees up to 5% more efficiency than traditional shell and tube versions,** thanks to the permanently countercurrent heat exchange on two separate evaporation levels - and with a **smaller refrigerant charge than a standard flooded shell and tube model.**

24 hour operation

The configuration with dual refrigerant circuit and dual centrifugal compressor with permanent magnets **guarantees high operational reliability**, making the XTW range particularly suitable **for installation in Data Centers or wherever high-value, continuous cycle industrial processes are carried out.**

XTW		461CS	641CS	761CS	921CS
		User water valu	ies 12/7°C, 30/35°C source wate	r side	
Cooling capacity	kW	461	644	784	916
Total absorbed power	kW	74.5	100.7	123.4	142.4
EER		6.18	6.39	6.35	6.43
SEER		9.61	9.66	9.76	9.73
SEPR		11.33	12.47	12.74	12.4
ESEER		8.52	8.79	8.77	8.86
Sound power	dB(A)	89	92	92	92
Dimensions [LxHxD]	mm		4800 x 1900 x 1500		4800 x 2000 x 1500

Also available with 60 Hz power supply

CHiRef

XVA

DATA CENTER

SERVICES

WATER CONDENSED CHILLERS AND HEAT PUMPS WITH INVERTER DRIVEN SCREW COMPRESSORS

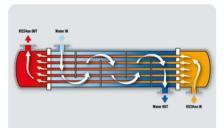
444.6–1587.7 kW

XVA is HiRef's range of water-cooled chillers with screw compressors and shell and tube heat exchangers. Use of the new R1234ze refrigerant, with ultra-low GWP (Global Warming Potential), and achievement of high energy efficiency levels, especially at partial loads, ensures the system has a low TEWI (Total Equivalent Warming Impact). The broad capacity range offered and the availability of different versions caters to a wide variety of needs. It's possible to choose operation in chiller-only mode with evaporative tower or Dry Cooler and operation in heat pump mode for high or low temperatures.

• Refrigerant R1234ze and R515B

- Also available with R515B refrigerant on request
- Available in version with Eurovent A (XVA) energy efficiency class
- Available in versions: chilling only (with well water or evaporative tower), chilling only (with Dry Cooler), heating only heat pump
- Electronic expansion valve
- Monitoring and limitation of the maximum absorbed power
- Available with screw compressors driven by inverters
- Thermal insulation hoods on the compressors for the high temperature heat pump versions

CATALOGUE CHILLERS AND HEAT PUMPS


Power and flexibility

Screw compressor allows **high cooling capacities** to be achieved with load modulation via the special slide valve. On request, a version with inverter either on one or on both compressors is available, **for finer adjustment of cooling capacity and obvious advantages in terms of energy efficiency.**

Low Noise set-up

The screw compressors, the only source of noise on the machine, can be placed in a dedicated enclosure lined with sound-absorbing material **that reduces the overall noise emission.**

New concept of heat exchange

Single pass shell and tube evaporators provide **excellent levels of thermodynamic efficiency** thanks to full heat exchange counter-flow.

Suitable for coupling to Polymorph HiRef modules

The XVA range offers **great versatility when combined with PLM hydronic modules,** allowing for different system configurations. Thanks to this flexibility, it can be used as: a reversible heat pump, a chiller with total recovery, a multi-purpose heat pump for 2-pipe systems, a multi-purpose heat pump for 4-pipe systems or an air conditioning system with Free-Cooling.

XVA		491	541	601	681	801	921	114	128	451	551	641	701	821	911	106	122	129	143	150
				Use	er wate	r value	s 12/7	°C, 30/3	35°C so	ource w	ater si	de								
Cooling capacity	kW	488.5	563.7	648.5	729.4	871	953.7	1113.8	1289.1	444.6	542.3	618.2	709	811.6	903.4	1096.5	1215	1260	1419.9	1493.9
Total absorbed power	kW	90.4	101.5	119.3	135.1	158.2	177.9	190.5	220.2	80.8	97.8	115.8	133.2	154.4	170.3	205.6	230.1	248.2	279.4	291.5
EER		5.41	5.56	5.44	5.4	5.51	5.36	5.85	5.85	5.5	5.55	5.34	5.32	5.26	5.3	5.33	5.28	5.08	5.08	5.12
SEER		7.63	7.52	7.52	7.56	7.54	7.52	7.88	7.94	7.63	7	6.79	6.93	6.94	6.94	7.03	6.99	7.23	7.52	7.55
SEPR		8.15	8.01	8	8	8	8.16	8.03	8.01	8.15	8	8	8.06	8.04	8.04	8.12	8.05	8.13	8.55	8.55
ESEER		6.99	6.9	6.89	6.92	6.9	6.93	7.1	7.13	6.99	6.43	6.38	6.4	6.55	6.56	6.46	6.52	6.5	6.61	6.65
Sound power	dB(A)	99	102	100	103	101	102	103	95	95	97	92	97	95	98	96	99	97	98	100
Dimensions [LxHxD]	mm	4800 x2250 x1500		00 250 900	5200 ×2250 ×2050	52 ×22 ×19		5400 x2250 x2050		1	4250 x 20	150 x 1501	D		4800 x2250 x1500	4250 x2050 x1500	4800 x2250 x1500	4250 ×2050 ×1500	4800 x2250 x1500	5200 x2250 x1900

SERVICES

INDUSTRIAL

WATER CONDENSED **CHILLERS AND HEAT PUMPS** WITH SCROLL COMPRESSORS

The XSA range consists of a wide range of units available in cooling only (D), heating only (W) and reversible heat pump (H) versions. The many refrigerating configuration options, together with specific construction choices, make XSA units suitable for a wide range of plant engineering requirements: redundancy, efficiency at partial loads, compactness to make the most of limited space in technical enclosures, low noise levels, auxiliary unit control and easy installation. The units of the XSA range feature high nominal efficiency, including at seasonal and partial loads, which makes them the best choice among small and medium-power water-condensed units.

Available versions:

- Cooling only unit, suitable for combined use with Dry Cooler.
- W Heating only unit
 - Reversible heat pump

Maximised energy efficiency

The units of the XSA range all feature high energy efficiency ratings up to class A, both in cooling and in heating mode. This is thanks to a careful selection of internal components, which also includes the adoption of **innovative** high efficiency Scroll compressors with direct start, permanent magnet motor technology. The high modulation range guaranteed by the multi-Scroll technology allows cooling/heating requirements to be met at any time, minimising energy waste and increasing seasonal efficiency. The high degree of partial load operation (up to 11% of the rated power), combined with water flow rate modulation (up to 20% of the nominal flow) allows operating costs and system maintenance costs to be reduced.

- Electronically controlled expansion valve supplied as standard
- Optional Vic-Taulic hydraulic couplings
- Available in Standard and Low Noise versions
- Programmable electronic control as part of standard equipment
- Smart management of several units in parallel
- Suitable for coupling to Polymorph module (PLM)
- Compliance with ERP regulations

CATALOGUE CHILLERS AND HEAT PUMPS

Plate heat exchangers

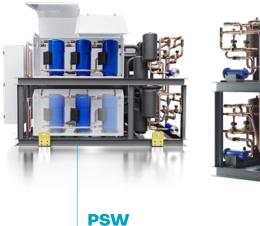
The XSA range uses braze-welded plate exchangers with asymmetrical channels, suitable for the use of high and medium pressure refrigerant gases. The configuration with asymmetrical channels **allows high exchange efficiencies to be reached while maintaining pressure drops low** on the water side - **reducing pumping costs** at both full and partial load.

More space in the heating unit

The possibility of installing the pumping units directly on the machine **avoids having to install external hydronic modules with the resulting coupling costs.** This, together with the adoption of compact plate heat exchangers directly facing the right side panel of the unit, guarantees **maximised unit compactness to make the most of the available space in the thermal power plant.**

Integrated hydronic module

XSA units are available with **integrated hydronic module** (optional), which includes user side and/ or source side circulation pumps.


XSA		061H	062H	071H	072H	081H	082H	091H	092H	111H	112H	131H	132H	141H	142H	144H	161H
				User wa	ater valu	ies 12/7	°C, 40/4	5°C sou	rce wate	er side							
Cooling capacity	kW	54.3	54.4	60.9	61	68.7	68.8	80.5	80.6	93.1	93.3	104.9	105.1	119.3	119.3	92.5	132.6
Total absorbed power	kW	15.4	15.4	17.2	17.2	19.2	19.2	23.3	23.2	26.9	26.8	31	30.9	35	35	25.3	39.6
EER		3.52	3.54	3.53	3.55	3.58	3.58	3.46	3.47	3.46	3.47	3.38	3.4	3.4	3.41	3.66	3.35
				User wa	ater valu	ies 40/4	5°C, 12/	7°C sou	rce wate	er side							
Thermal power	kW	69.3	69.4	77.7	77.7	87.5	87.5	103.1	103.2	119.3	119.4	135.1	135.2	153.4	153.4	117.1	171.1
Total absorbed power	kW	15.4	15.4	17.2	17.2	19.2	19.2	23.3	23.2	26.9	26.8	31	30.9	35.1	35	25.3	39.6
COP		4.49	4.51	4.51	4.52	4.55	4.56	4.43	4.45	4.43	4.45	4.35	4.37	4.37	4.38	4.63	4.32
SCOP		4.9	5.04	4.91	5.07	4.95	5.07	4.85	5.01	4.78	4.86	4.74	4.89	4.75	4.88	5.24	4.75
Sound power	dB(A)	77	77	78	78	81	81	81	81	81	81	82	82	83	83	81	85
Sound power [Low noise]	dB(A)	74	74	75	75	78	78	78	78	78	78	79	79	80	80	78	82
Dimensions [LxHxD]	mm				1174×19	30×772						1644×19	30x772			2374 ×1990 ×877	1644 ×1930 ×772

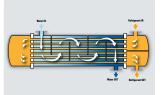
XSA		162H	164H	181H	182H	184H	204H	214H	243H	244H	283H	284H	314H	344H	374H	424H	484H
				User wa	ater valu	ies 12/7	°C, 40/4	5°C sou	rce wate	er side							
Cooling capacity	kW	132.7	136.9	174.4	174.6	162	173.7	185.5	199.3	210.2	259.1	236.7	261.3	302.3	343.4	371.6	407.1
Total absorbed power	kW	39.5	39	51.6	51.6	46.2	50.3	54.5	59.1	62.1	79.1	71.3	81.1	93.5	105.8	113.8	132
EER		3.36	3.51	3.38	3.39	3.51	3.45	3.4	3.37	3.38	3.28	3.32	3.22	3.23	3.24	3.26	3.08
				User wa	ater valu	ies 40/4	5°C, 12/	7°C sou	rce wate	er side							
Thermal power	kW	171.2	174.8	224.6	224.7	206.9	222.7	238.3	256.8	270.4	335.4	305.6	339.8	392.9	445.9	481.7	534.6
Total absorbed power	kW	39.6	39	51.7	51.6	46.2	50.4	54.5	59.2	62.1	79.1	71.3	81.1	93.5	105.9	113.9	132
COP		4.33	4.48	4.35	4.36	4.48	4.42	4.37	4.34	4.35	4.24	4.29	4.19	4.2	4.21	4.23	4.05
SCOP		4.9	5.18	4.78	4.94	5.18	5.09	5	5.03	5.03	4.98	4.99	4.98	4.97	5.02	5.02	4.84
Sound power	dB(A)	85	84	87	87	84	84	84	86	85	88	86	88	89	90	89	91
Sound power [Low noise]	dB(A)	82	81	84	84	81	81	81	83	82	85	83	85	86	87	86	88
Dimensions [LxHxD]	mm	1644 x1930 x772	2374 x1990 x877	1644x19	130x772						2374x19	190x877					

www.hiref.it

PSW multi-function units are used to produce hot and cold water, **both independently and simultaneously**, to meet the cooling and heating needs of both industrial and commercial applications. PSW units are ideally suited for **use in 4-pipe systems**. All units are available with two refrigerant circuits and shell and tube exchangers, for a high level of unit reliability. The layout of the components allows **easy access during maintenance** while the hydraulic connections all on the same side allow for **easy installation** and reduced installation space requirements.

RSW

- Electronically controlled expansion valve supplied as standard
- Optional Vic-Taulic hydraulic couplings
- Available in Standard and Low Noise versions
- Programmable electronic control as part of standard equipment
- Smart management of several units in parallel
- Easy access to components for routine maintenance
- Compliance with ERP regulations
- Available in multipurpose version for 4 pipe systems



CATALOGUE CHILLERS AND HEAT PUMPS

Maximum efficiency at partial loads

Accurate selection of the components allows high efficiency to be obtained at partial loads; this is thanks above all to the use of Scroll compressors and to the use of electronically controlled electric expansion valves (one for each circuit), optimised to track refrigerant load trends in all conditions of use. The shell and tube heat exchanger also ensures low water/refrigerant approach temperatures during operation, all to the advantage of heat exchange efficiency.

Reliability: shell and tube

The use of shell and tube exchangers with water flow on the shell side implies **a lower risk of blocking the flow due to exchanger clogging** compared to units with plate heat exchangers. This is ascribable to larger throughsections - the exchanged power being the same. Additionally, the dual-pass heat exchange rensures **high heat exchange efficiency** both in "chiller" and in "heat pump" modes, **with lower consumption figures for the user.**

Reduced footprint

The PSW series has a **compact** layout thanks to the optimised arrangement of the compressors and heat exchangers. The power density reaches very high values, exceeding 100kW/m². The lower weight compared to units with screw compressors facilitates installation and maintenance operations.

Low noise levels

Thanks to the Scroll compressors used, the PSW units feature lower noise levels than other compressor technologies used for similar applications. Also, thanks to the use of multi-Scroll technology, at partial loads unnecessary compressors are turned off which results in **a** further noise reduction. For extra soundproofing, the Low Noise version is available with soundproofed sheet metal enclosures to compartmentalise the compressors.

PSW		324P	374P	444P	484P	506P	566P	646P	706P
		Cooling: Util	ity water temper	ature 12/7°C, Re	covery water te	mperature 40/4	5°C		
Cooling capacity	kW	293.7	334	398.6	412	442.4	500.6	579	676.2
Thermal power	kW	370.8	423.9	503.6	521.4	558.1	635.7	730.2	866.6
Total absorbed power	kW	77.1	89.9	105.1	109.4	115.7	135.1	151.2	190.3
TER		8.62	8.43	8.59	8.53	8.65	8.41	8.66	8.11
			User water valu	ies 12/7°C, 30/3	5°C source wate	r side			
Cooling capacity	kW	329.3	374.4	445.6	459.9	498.4	561.4	648.7	692
Total absorbed power	kW	61.9	72.1	84	87.2	92.9	108.3	121.1	130.9
EER		5.32	5.2	5.31	5.27	5.34	5.18	5.36	5.29
			User water valu	ies 12/7°C, 40/4	5°C source wate	er side			
Cooling capacity	kW	329.3	374.4	445.6	459.9	498.4	561.4	648.7	692
Total absorbed power	kW	61.9	72.1	84	87.2	92.9	108.3	121.1	130.9
EER		5.32	5.2	5.31	5.27	5.34	5.18	5.36	5.29
			User water valu	ies 40/45°C, 12/	7°C source wate	er side			
Thermal power	kW	370.8	423.9	503.6	521.4	558.1	635.7	730.2	866.6
Total absorbed power	kW	77.1	89.9	105.1	109.4	115.7	135.1	151.2	190.3
COP		4.81	4.72	4.79	4.77	4.82	4.71	4.83	4.55
Sound power	dB(A)	89	89	90	90	91	91	91	90
Sound power [Low noise]	dB(A)	85	85	86	86	87	87	87	86
Dimensions [LxHxD]	mm				3500X21	00X1800			

RSW		324H	374H	444H	484H	506H	566H	646H	706H
			User water valu	ies 12/7°C, 30/3	5°C source wate	er side			
Cooling capacity	kW	329.3	374.4	445.6	459.9	498.4	561.4	648.7	692
Total absorbed power	kW	61.9	72.1	84	87.2	92.9	108.3	121.1	130.9
EER		5.32	5.2	5.31	5.27	5.34	5.18	5.36	5.29
			User water valu	ies 12/7°C, 40/4	5°C source wate	er side			
Cooling capacity	kW	329.3	374.4	445.6	459.9	498.4	561.4	648.7	692
Total absorbed power	kW	61.9	72.1	84	87.2	92.9	108.3	121.1	130.9
EER		5.32	5.2	5.31	5.27	5.34	5.18	5.36	5.29
			User water valu	ies 40/45°C, 12/	7°C source wate	er side			
Thermal power	kW	370.8	423.9	503.6	521.4	558.1	635.7	730.2	866.6
Total absorbed power	kW	77.1	89.9	105.1	109.4	115.7	135.1	151.2	190.3
COP		4.81	4.72	4.79	4.77	4.82	4.71	4.83	4.55
Sound power	dB(A)	89	89	90	90	91	91	91	90
Sound power [Low noise]	dB(A)	85	85	86	86	87	87	87	86
Dimensions [LxHxD]	mm				3500X21	00X1800			

SERVICES

XSB

INDUSTRIAL

WATER CONDENSED CHILLERS AND HEAT PUMPS WITH SCROLL COMPRESSORS

0

SCROLL COMPRESSORS

HiRef

39.8-838.3 kW

RESISTANT

PLATE HEAT

HIRe

XSB is HiRef's range of water-condensed chillers and heat pumps with multi-scroll compressors. The many refrigerating configuration options, together with specific construction choices, make the ample choice of XSB units **suitable for a wide range of plant engineering requirements: redundancy, efficiency at partial loads, compactness to make the most of limited space in technical enclosures, low noise levels, auxiliary unit control, and easy installation**. The configurations available for the refrigeration circuit are:

EFFICIENCY PACK 1: Dual compressor on dual circuit for high system redundancy.

EFFICIENCY PACK 2: Dual compressor (tandem) on single circuit for greater efficiency at partial loads.

EFFICIENCY PACK 3: 3 compressors on single circuit for greater efficiency at partial loads.

EFFICIENCY PACK 4: 4 compressors (dual tandem) on dual circuit, for a redundant system that is efficient with low loads.

Two refrigerating circuits with five or six Scroll compressors for capacities above 560 kW.

- Available with R454B or R410A refrigerant
- Can be used with Polymorph hydronic modules by HiRef
- Versions: cooling only chiller with well/mains water source, cooling only chiller with Dry Cooler water source/ evaporative tower, reversible heat pump and heating only heat pump
- Electronically controlled expansion valve supplied as standard
- Easy connection with Vic-Taulic type couplings
- Partial heat recovery (desuperheater)(optional)
- Possibility for the software to natively manage the application of two 3-way valves to use the Free-Cooling option offered by the geothermal source

CATALOGUE CHILLERS AND HEAT PUMPS

Maximum efficiency at partial loads

The XSB range adopts a multi-Scroll solution also on single circuits, electronically controlled expansion valves, plate heat exchangers and the option to control the (external) circulation pumps **via dedicated software:** all these characteristics allow **high energy efficiency to be achieved at partial loads.**

Attention to detail and low noise operation

Scroll compressors, which are the main noise source in the unit, are fitted on rubber feet; these **dampen vibration and therefore attenuate the noise transmitted to the various system parts.** On request, the compressor compartment can be lined with special sound absorbing material and the compressors encased in special insulating hoods **to reduce airborne noise emissions.**

More space in the heating unit

The adoption of compact plate heat exchangers facing the unit right side panel **maximise the use of the available internal space thanks to reduced unit footprint.**

Efficiency and reliability in line with system requirements

The main strength of the XSB range is the number of available configurations of the refrigeration circuit, which depending on the machine size and special system requirements (redundancy and/or efficiency at reduced loads) can include:

EFFICIENCY PACK 1: from 92 to 196 kW.

EFFICIENCY PACK 2: from 53 to 200 kW.

EFFICIENCY PACK 3: from 268 to 301 kW.

EFFICIENCY PACK 4: from 160 to 560 kW.

2 refrigeration circuits with 5 or 6 Scroll compressors: over 560 kW.

XSB		041H	042H	051H	052H	061H	062H	071H	072H	081H	082H	091H	092H	111H	112H	131H	132H	141H	142H	144H	161H
				Us	er wat	er valı	ies 12/	7°C, 4	0 /4 5°C	sourc	e wate	er side									
Cooling capacity	kW	39.8	40	45.8	46	53.3	53.5	59.5	59.8	69.7	69.7	77.1	77.4	92.7	93.1	104.8	104.9	117.7	118	121	128.9
Total absorbed power	kW	14.2	14.2	16.8	16.8	18.7	18.7	21	21.1	23.8	23.9	27.3	27.3	31.8	31.8	37.3	37.3	40.5	40.5	41.7	44.1
EER		2.81	2.82	2.72	2.73	2.86	2.86	2.83	2.83	2.92	2.92	2.83	2.84	2.91	2.93	2.81	2.81	2.9	2.91	2.9	2.92
				Us	er wat	er valı	ies 40/	/45°C,	12/7°0	sourc	e wate	er side									
Thermal power	kW	53.5	53.7	62.1	62.3	71.4	71.6	79.9	80.1	92.8	92.8	103.4	103.8	123.5	123.9	140.7	140.9	156.8	157	161.2	171.5
Total absorbed power	kW	14.2	14.2	16.8	16.9	18.7	18.7	21.1	21.1	23.9	23.9	27.3	27.3	31.8	31.8	37.3	37.4	40.5	40.5	41.7	44.2
COP		3.78	3.79	3.69	3.69	3.82	3.83	3.79	3.8	3.89	3.89	3.79	3.8	3.88	3.89	3.77	3.77	3.87	3.88	3.86	3.88
SCOP		5.35	5.82	5.17	5.65	5.42	5.9	5.31	5.79	5.53	5.99	5.4	5.88	5.48	5.82	5.36	5.82	5.47	5.91	6.11	5.53
Sound power	dB(A)	76	76	78	78	78	78	79	79	79	79	81	81	83	83	85	85	85	85	82	85
Sound power [Low noise]	dB(A)	72	72	74	74	74	74	75	75	75	75	77	77	79	79	81	81	81	81	78	81
Dimensions [LxHxD]	mm						1174×19	30×772								1644x19	30x772			2374 x1990 x877	1644 x1930 x772

XSB		162H	164H	181H	182H	184H	204H	214H	243H	244H	283H	284H	314H	344H	374H	424H	484H	535H	576H	636H	706H
				Us	er wat	er valu	ies 12/	7°C, 4()/45°C	sourc	e wate	r side									
Cooling capacity	kW	129	137.5	164	164.3	158.4	170.5	186.4	203.1	224	248.4	240.2	259.9	294.2	328.9	376.3	423.5	471.7	523.6	552.6	626.7
Total absorbed power	kW	44.1	48.4	56.3	56.4	53.5	58.9	63.5	64.7	71.7	83.9	79.7	87.6	100	112.3	125.9	139.8	159.1	175.5	190.2	211.5
EER		2.92	2.84	2.91	2.91	2.96	2.89	2.94	3.14	3.12	2.96	3.01	2.97	2.94	2.93	2.99	3.03	2.96	2.98	2.91	2.96
				Us	er wat	er valu	ies 40/	/45°C,	12/7°C	sourc	e wate	r side									
Thermal power	kW	171.5	184.1	218.2	218.6	210.1	227.3	247.6	265.4	293.4	329.4	317.3	344.3	390.6	437	497.5	558	624.3	691.8	734.6	838.3
Total absorbed power	kW	44.2	48.4	56.3	56.3	53.6	59	63.5	64.7	71.7	83.9	79.8	87.6	100	112.3	126	139.8	159.2	175.6	190.3	216.5
COP		3.88	3.8	3.88	3.88	3.92	3.85	3.9	4.1	4.09	3.93	3.98	3.93	3.9	3.89	3.95	3.99	3.92	3.94	3.86	3.87
SCOP		5.98	6.09	5.43	5.84	6.26	6.1	6.11	6.4	6.39	6.1	6.37	6.33	6.08	6.12	6.17	6.24	6.21	3.94	3.86	3.87
Sound power	dB(A)	85	82	90	90	84	85	86	87	88	92	88	88	91	93	94	95	91	91	90	93
Sound power [Low noise]	dB(A)	81	78	86	86	80	81	82	83	84	88	84	84	87	89	90	91	87	87	86	89
Dimensions [LxHxD]	mm	1644 x1930 x772	2374 x1990 x877	x19	44 130 72						2374x19	190x877	,					3	820×20	40x108	5

Performance figures refer to units with R410A refrigerant. Data subject to change without notice.

SERVICES

INDUSTRIAL

MULTIPURPOSE WATER COOLED HEAT PUMPS FOR HIGH TEMPERATURES, **USER SIDE AND SOURCE SIDE**

KSW P

CHiRef

10-150.7 kW

KSW P units are multipurpose water/water heat pumps used for the production of domestic hot water at high temperature and are designed for both tertiary and industrial applications. KSW P units ensure production of hot water up to 80°C, without using an electric (element) or gas booster. The main feature of this P range is being able to manage, on the heat source side, very different thermal levels: these heat pumps can use groundwater, usually available at 10-15°C, or water from thermal waste up to 45°C. The versions available for 2-pipe or 4-pipe systems and the number of refrigeration configurations provided, ranging from **single-circuit solutions** with single or tandem compressors up to two-circuit solutions with tandem compressors, allow the best redundancy and maximum efficiency to be achieved, even simultaneously, at partial loads.

More space in the heating unit

A KSW P unit can be used to produce domestic hot water, heating and cooling water from a single machine. This optimises the use of space in the heat station, avoiding the need to install cascade-connected units and additional hydronic modules that would reduce the space available for the installation of other equipment.

Operation safety

Being able to produce water up to 80°C **avoids** having to run anti-Legionella cycles or, in the event that the water is stored at a lower temperature, to be able to run them more efficiently than via a boiler or an electrical heater.

R B B

0 . 6

- Refrigerant R134a
- Electronically controlled expansion valve supplied as standard
- Vic-Taulic hydraulic couplings
- Optional energy meter integrated via Modbus, for metering the energy absorbed by the machine
- External pump control according to constant T or constant ΔT logic

Multi-purpose: Total Recovery

All sizes of the KSW P series can be coupled to both 2 and 4-pipe systems. In the former case system-side production of hot or cold water and the simultaneous total recoveryside production of hot water is ensured; in the latter case the simultaneous production of hot and cold water for heating and cooling is ensured.

Total recovery

Cooling

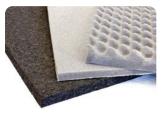
CHiRef

CATALOGUE CHILLERS AND HEAT PUMPS

Efficiency and reliability in line with system requirements

The available refrigerating circuit configurations have been designed to ensure, also simultaneously, redundancy and efficiency at partial loads. In particular, depending on the size of the machine and any special plant requirements, the units may include:

- single circuit solutions with single compressor;
- single circuit solutions with compressors in a tandem


arrangement, for high system efficiency;

- dual circuit solutions with one compressor per circuit, for high system redundancy;
- dual circuit solutions with four compressors (in a dual tandem arrangement) on two circuits, for a system that is both redundant and efficient at partial loads.

Maximum efficiency at partial loads

The KSW P range uses Scroll compressors, electronically controlled expansion valves for each circuit and plate heat exchangers: all these features ensure high efficiencies at partial loads and accurate tracking of cooling load trends in all conditions of use.

Attention to detail and low noise operation

Scroll compressors, which are the main noise source in the unit, are fitted on rubber feet; these dampen vibration and therefore **attenuate the noise transmitted to the various system parts.**

On request, the compressor compartment can be lined with special sound absorbing material and the compressors encased in special insulating hoods **to reduce airborne noise emissions.**

KSW P		040P	050P	060P	081P	082P	091P ()92P 1	01P	102P	121P	122P	151P	152P	171P	172P	174P	201P
			Utility w	vater ter	nperatu	re 12/7°	C. Recov	very wat	er tem	peratur	e 60/7	0°C						
Cooling capacity	kW	10	13.1	16	10	20	11.2		13.1	26.2	16	32	20.5	40.9	20.5	47.9	22.4	27.5
Thermal power	kW	16.5	21.6	26.7	16.5	33.1	18.5	37	21.6	43.2	26.7	53.4	33.5	67	33.5	78.1	37	44.6
Total absorbed power	kW	6.9	8.9	11.3	6.8	13.7	7.7	15.3	8.9	17.9	11.3	22.5	13.7	27.5	13.7	31.8	15.3	18
TER		3.87	3.88	3.79	3.88	3.87	3.88		3.89	3.88	3.8	3.79	3.93	3.93	3.93	3.96	3.88	4
Sound power	dB(A)	74	74	78	77	77	77	77	77	77	81	81	84	84	85	85	80	86
Sound power [Low noise]	dB(A)	70	70	74	73	73	73	73	73	73	77	77	80	80	79	79	74	80
Dimensions [LxHxD]	mm	80	4x1462x6	07				1	174x159	4x772					1644x18	594x772	2374 x1854 x877	1644 x1594 x772
				User w	ater val	ues 12/7	7°C, 40/	45°C sou	urce wa	ater sid	e							
Cooling capacity	kW	15.9	20.7	25.5	16.5	32.8	18.5	36.4	21.6	41.8	26.4	52.4	31.3	61	31.3	70.5	36.9	41.2
Total absorbed power	kW	4.2	5.5	6.9	4	8.2	4.5	9.2	5.3	10.8	6.6	13.5	8.3	17	8.3	19.3	9	10.5
EER		3.83	3.79	3.73	4.09	4.01	4.1	3.96	4.1	3.87	3.98	3.89	3.75	3.59	3.75	3.65	4.09	3.91
Sound power	dB(A)	74	74	78	77	77	77	77	77	77	81	81	84	84	85	85	80	86
Sound power [Low noise]	dB(A)	70	70	74	73	73	73	73	73	73	77	77	80	80	79	79	74	80
•					1644	1174	1644	1174 1	1644	1174	1644	1174	1644	1174	2374	1644	3130	2374
Dimensions [LxHxD]	mm	117	4x1594x7	72	x1594						x1594	x1594	x1594	x1594	x1854	x1594	x1854	x1854
					x772		_	_	_	x772	x772	x772	x772	x772	x877	x772	x877	x877
		1						10°C so						1	1		1	1
Thermal power	kW	18.5	24.2	29.9	18.5	37	20.7		24.2	48.3	29.8	59.7	37	74	37	86	41.3	49
Total absorbed power	kW	6.9	9	11.3	6.9	13.7	7.7		8.9	17.9	11.3	22.6	13.7	27.4	13.7	31.6	15.3	17.9
COP		2.69	2.7	2.64	2.7	2.69	2.7	2.7	2.7	2.7	2.65	2.65	2.71	2.7	2.71	2.72	2.7	2.74
SCOP		4.18	4.2	4.17	4.91	4.92	4.89	4.94	4.84	4.95	4.86	4.87	4.52	4.59	4.62	4.65	5.15	4.67
KOW D					0													
KSW P		202P	204P	221P	222P	241P	242P	244P	301	P 302	2P 30)4P 3	44P 4	404P	444P	484P	554P	604P
KSW P													44P 4	404P	444P	484P	554P	604P
	kW							244P		peratur	e 60/7	O°C	444P 4	404P 54.9	444P 54.9	68	554P 84.5	604P 84.5
Cooling capacity	kW kW		Utility w	ater ter 27.5	n peratu 61.4	re 12/7° 34	C, Recov	very wat	er tem	peratur 2 84.	e 60/7 5 4	O°C					84.5	84.5
Cooling capacity Thermal power	kW	54.9 89.1	Utility w 26.2 43.2	27.5 44.6	n peratu 61.4 100.1	re 12/7° 34 55.5	C, Recov 68 111.1	very wat 32 53.4	er tem 42.2 68.6	peratur 2 84. 3 137.	e 60/7 5 4 .2	0°C 0.9 67	40.9 67	54.9 89.1	54.9 89.1	68 111	84.5 137.2	84.5 137.2
Cooling capacity Thermal power Total absorbed power		54.9 89.1 36.1	Utility w 26.2 43.2 17.9	27.5 44.6 18	nperatu 61.4 100.1 40.7	re 12/7° 34 55.5 22.7	C, Recov 68 1111.1 45.4	7ery wat 32 53.4 22.5	er tem 42.2 68.6 27.7	peratur 2 84. 3 137. 55.	5 4 2 2	0.9 67 7.4	40.9 67 27.4	54.9 89.1 36	54.9 89.1 36	68 111 45.4	84.5 137.2 55.5	84.5 137.2 55.5
Cooling capacity Thermal power Total absorbed power TER	kW kW	54.9 89.1 36.1 3.99	Utility w 26.2 43.2 17.9 3.89	27.5 27.5 44.6 18 4	nperatu 61.4 100.1 40.7 3.97	re 12/7° 34 55.5 22.7 3.95	C, Recov 68 111.1 45.4 3.95	32 53.4 22.5 3.8	er tem 42.2 68.6 27.7 4	peratur 2 84. 3 137. 7 55. 3.9	e 60/7 5 4 .2 1 5 2 9 3	0°C 0.9 67 7.4 .93	40.9 67 27.4 3.93	54.9 89.1 36 4	54.9 89.1 36 4	68 111 45.4 3.95	84.5 137.2 55.5 4	84.5 137.2 55.5 4
Cooling capacity Thermal power Total absorbed power TER Sound power	kW kW dB(A)	54.9 89.1 36.1 3.99 86	Utility w 26.2 43.2 17.9	ater ter 27.5 44.6 18 4 87	nperatu 61.4 100.1 40.7 3.97 87	re 12/7° 34 55.5 22.7 3.95 88	C, Recov 68 1111.1 45.4 3.95 88	7ery wat 32 53.4 22.5 3.8 84	er tem 42.2 68.6 27.7 4 90	peratur 2 84. 3 137. 55. 3.9 90	e 60/7 5 4 .2 1 5 2 9 3	0.9 67 7.4 .93 87	40.9 67 27.4 3.93 88	54.9 89.1 36 4 89	54.9 89.1 36 4 90	68 111 45.4 3.95 91	84.5 137.2 55.5 4 92	84.5 137.2 55.5 4 93
Cooling capacity Thermal power Total absorbed power TER	kW kW	54.9 89.1 36.1 3.99 86 80 1644 ×1594	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854	27.5 27.5 44.6 18 4	nperatu 61.4 100.1 40.7 3.97 87 81	re 12/7° 34 55.5 22.7 3.95	C, Recov 68 111.1 45.4 3.95	7ery wat 32 53.4 22.5 3.8 84 78 2374 x1854	er tem 42.2 68.6 27.7 4 90 82	peratur 2 84. 3 137. 7 55. 3.9	e 60/7 5 4 2 1 5 2 9 3 9 3	0°C 0.9 67 7.4 .93	40.9 67 27.4 3.93	54.9 89.1 36 4 89 81	54.9 89.1 36 4	68 111 45.4 3.95 91 83	84.5 137.2 55.5 4	84.5 137.2 55.5 4
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise]	kW kW dB(A) dB(A)	54.9 89.1 36.1 3.99 86 80 1644	Utility w 26.2 43.2 17.9 3.89 80 74 2374	27.5 44.6 18 4 87 81	nperatu 61.4 100.1 40.7 3.97 87 81 1644x1	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772	C, Recov 68 111.1 45.4 3.95 88 82	ery wat 32 53.4 22.5 3.8 84 78 2374 ×1854 ×877	er tem 42.2 68.6 27.7 4 90 82 1644	peratur 2 84. 3 137. ' 55. 3.9 90 82 82 ×1594×77	e 60/7 5 4 2 1 5 2 9 3 9 3 9 3	0.9 67 7.4 .93 87	40.9 67 27.4 3.93 88	54.9 89.1 36 4 89 81	54.9 89.1 36 4 90 82	68 111 45.4 3.95 91 83	84.5 137.2 55.5 4 92	84.5 137.2 55.5 4 93
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD]	kW kW dB(A) dB(A) mm	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854 ×877	27.5 44.6 18 4 87 81	nperatu 61.4 100.1 40.7 3.97 81 1644×1 1644×1	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 ues 12/7	C, Recov 68 111.1 45.4 3.95 88 82 82	32 53.4 22.5 3.8 84 2374 ×1854 ×877 45°C sou	er tem 42.2 68.6 27.7 4 90 82 1644	peratur 2 84. 3 137. 55. 3.9 90 82 ×1594×77 ater sid	e 60/7 5 4 2 1 5 2 9 3 0 3 2 72 e	0°C 0.9 67 7.4 .93 87 79	40.9 67 27.4 3.93 88 80	54.9 89.1 36 4 89 81 2374	54.9 89.1 36 4 90 82 4×1854×87	68 111 45.4 3.95 91 83 77	84.5 137.2 55.5 4 92 84	84.5 137.2 55.5 4 93 85
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD]	kW kW dB(A) dB(A) mm kW	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854 ×877 43.2	27.5 44.6 18 4 87 81 User w 41.2	nperatu 61.4 100.1 40.7 3.97 87 81 1644×1 1644×1 ater val 87	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 ues 12/7 51	C, Recov 68 111.1 45.4 3.95 88 82	32 53.4 22.5 3.8 84 78 2374 ×1854 ×877 45°C sol 52.8	er tem 42.2 68.6 27.7 4 90 82 1644 JICE Wa 63.4	peratur 2 84. 3 137. 5 55. 3.9 90 82 82 ×1594×77 1594×77 ater side 120	e 60/7 5 4 2 1 5 2 9 3 9 3 2 72 72 e. 1 6	0°C 0.9 67 .7.4 .93 87 79 2.6	40.9 67 27.4 3.93 88 80 62.6	54.9 89.1 36 4 89 81 2374 82.4	54.9 89.1 36 4 90 82 4×1854×87 82.4	68 111 45.4 3.95 91 83 77	84.5 137.2 55.5 4 92 84 126.8	84.5 137.2 55.5 4 93 85 126.8
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD] Cooling capacity Total absorbed power	kW kW dB(A) dB(A) mm	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772 78.9 21.7	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854 ×877 43.2 10.5	27.5 44.6 18 4 87 81 User w 41.2 10.5	nperatu 61.4 100.1 40.7 3.97 87 81 1644x1 ater val 87 24.8	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 ues 12/7 51 13.2	C, Recov 68 111.1 45.4 3.95 88 82 7°C, 40// 99.3 27.1	22.5 3.4 22.5 3.8 84 78 2374 ×1854 ×877 45°C sout 52.8 13.3	er tem 42.2 68.6 27.7 4 90 82 1644 17CE W2 63.4 16.2	peratur 2 84. 3 137. 5 55. 3.9 90 82 82 ×1594×77 1594×77 ater side 1200 # 1200 ! 33.	e 60/7 5 4 .2 1 5 2 9 3 0 1 72 1 6 7	0°C 0.9 67 7.4 .93 87 79 2.6 6.7	40.9 67 27.4 3.93 88 80 62.6 16.7	54.9 89.1 36 4 89 81 2374 82.4 21.1	54.9 89.1 36 4 90 82 4×1854×87 82.4 21	68 111 45.4 3.95 91 83 77 77	84.5 137.2 55.5 4 92 84 126.8 32.4	84.5 137.2 55.5 4 93 85 126.8 32.4
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD] Cooling capacity Total absorbed power EER	kW kW dB(A) dB(A) mm kW kW	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772 78.9 21.7 3.63	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854 ×877 43.2 10.5 4.1	ater ter 27.5 44.6 18 4 87 81 User w 41.2 10.5 3.91	nperatu 61.4 100.1 40.7 3.97 87 81 1644x1 ater val 87 24.8 3.51	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 ues 12/7 51 13.2 3.85	68 111.1 45.4 3.95 88 82 °C, 40/ 4 99.3 27.1 3.66	state state 32 53.4 22.5 3.8 84 78 2374 ×1854 ×877 45°C sout 52.8 13.3 3.98	er tem 42.2 68.6 27.7 4 90 82 1644 17CE Wa 63.4 16.2 3.91	peratur 2 84. 3 137. 5 55. 3.9 90 82 82 xx1594x77 34er side ater side 120 2 33. 3.5 3.5	e 60/7 5 4 2 1 5 2 9 3 2 72 e 1 6 7 1 7 3	0°C 0.9 67 7.4 .93 87 79 2.6 6.7 .75	40.9 67 27.4 3.93 88 80 62.6 16.7 3.75	54.9 89.1 36 4 89 81 2374 82.4 21.1 3.91	54.9 89.1 36 4 90 82 4×1854×87 82.4 21 3.92	68 111 45.4 3.95 91 83 77 102 26.5 3.85	84.5 137.2 55.5 4 92 84 126.8 32.4 3.91	84.5 137.2 55.5 4 93 85 126.8 32.4 3.91
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD] Cooling capacity Total absorbed power EER Sound power	kW kW dB(A) dB(A) mm kW kW kW	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772 78.9 21.7 3.63 86	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854 ×877 43.2 10.5 4.1 80	ater ter 27.5 44.6 18 4 87 81 User w 41.2 10.5 3.91 87	nperatu 61.4 100.1 40.7 3.97 81 1644×1 1644×1 ater val 87 24.8 3.51 87	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 1594×772 51 13.2 3.85 88	C, Recov 68 111.1 45.4 3.95 88 82 7°C, 40// 99.3 27.1 3.66 88	ery wat 32 53.4 22.5 3.8 84 78 2374 ×1854 ×877 45°C sol 52.8 13.3 3.98 84	er tem 42.2 68.6 27.7 4 90 82 1644 1644 17Ce Wa 63.4 16.2 3.91 90	peratur 2 84. 3 137. 55. 3.9 90 82 xx1594x77 ater side + 120 2 33.3 1 3.5	e 60/7 5 4 2 1 5 2 9 3 2 72 e 1 6 7 1 7 3 1 3	0°C 0.9 67 7.4 .93 87 79 2.6 6.7 .75 87	40.9 67 27.4 3.93 88 80 62.6 16.7 3.75 88	54.9 89.1 36 4 89 81 2374 82.4 21.1 3.91 89	54.9 89.1 36 4 90 82 4×1854×87 82.4 21 3.92 90	68 111 45.4 3.95 91 83 77 102 26.5 3.85 91	84.5 137.2 55.5 4 92 84 126.8 32.4 3.91 92	84.5 137.2 55.5 4 93 85 126.8 32.4 3.91 93
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD] Cooling capacity Total absorbed power EER	kW kW dB(A) dB(A) mm kW kW	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772 78.9 21.7 3.63	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854 ×877 43.2 10.5 4.1	ater ter 27.5 44.6 18 4 87 81 User w 41.2 10.5 3.91	nperatu 61.4 100.1 40.7 3.97 87 81 1644x1 ater val 87 24.8 3.51	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 ues 12/7 51 13.2 3.85	68 111.1 45.4 3.95 88 82 °C, 40/ 4 99.3 27.1 3.66	state state 32 53.4 22.5 3.8 84 78 2374 ×1854 ×877 45°C sout 52.8 13.3 3.98	er tem 42.2 68.6 27.7 4 90 82 1644 17CE Wa 63.4 16.2 3.91	peratur 2 84. 3 137. 5 55. 3.9 90 82 82 xx1594x77 34er side ater side 120 2 33. 3.5 3.5	e 60/7 5 4 2 1 5 2 9 3 2 72 e 1 6 7 1 7 3 1 3	0°C 0.9 67 7.4 .93 87 79 2.6 6.7 .75	40.9 67 27.4 3.93 88 80 62.6 16.7 3.75	54.9 89.1 36 4 89 81 2374 82.4 21.1 3.91	54.9 89.1 36 4 90 82 4×1854×87 82.4 21 3.92	68 111 45.4 3.95 91 83 77 102 26.5 3.85	84.5 137.2 55.5 4 92 84 126.8 32.4 3.91	84.5 137.2 55.5 4 93 85 126.8 32.4 3.91
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD] Cooling capacity Total absorbed power EER Sound power	kW kW dB(A) dB(A) mm kW kW kW	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772 78.9 21.7 3.63 86 80 1644	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854 ×877 43.2 10.5 4.1 80	User w 41.2 10.5 3.91 87 81	nperatu 61.4 100.1 40.7 3.97 81 1644×1 1644×1 ater val 87 24.8 3.51 87	re 12/7° 34 55.5 22.7 3.955 88 82 1594×772 til 13.2 3.85 88 82 2374	C, Recov 68 111.1 45.4 3.95 88 82 7°C, 40// 99.3 27.1 3.66 88	ery wat 32 53.4 22.5 3.8 84 78 2374 ×1854 ×877 45°C sol 52.8 13.3 3.98 84	er tem 42.2 68.6 27.7 4 90 82 1644 1644 17Ce Wa 63.4 16.2 3.91 90	peratur 2 84. 3 137. 5 3.9 90 82 xx1594x77 ater side 4 120 3.3.5 90 82	e 60/7 5 4 2 1 5 2 9 3 0 3 2 72 72 e 6 72 1 6 7 1 7 3 0 1 7 3 0 1 7	0°C 0.9 67 7.4 .93 87 79 2.6 6.7 .75 87	40.9 67 27.4 3.93 88 80 62.6 16.7 3.75 88	54.9 89.1 36 4 89 81 2374 82.4 21.1 3.91 89	54.9 89.1 36 4 90 82 4×1854×87 82.4 21 3.92 90	68 111 45.4 3.95 91 83 77 102 26.5 3.85 91	84.5 137.2 55.5 4 92 84 126.8 32.4 3.91 92	84.5 137.2 55.5 4 93 85 126.8 32.4 3.91 93
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD] Cooling capacity Total absorbed power EER Sound power	kW kW dB(A) dB(A) mm kW kW kW	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772 78.9 21.7 3.63 86 80	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854 ×877 43.2 10.5 4.1 80 74	ater ter 27.5 44.6 18 4 87 81 User w 41.2 10.5 3.91 87 81	nperatu 61.4 100.1 40.7 3.97 81 1644x1 ater val 87 24.8 3.51 87 81	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 151 13.2 3.85 88 82	C, Recov 68 111.1 45.4 3.95 88 82 ********************************	state state 32 53.4 22.5 3.8 84 78 2374 ×1854 ×1854 ×877 45°C solt 52.8 13.3 3.98 84 78	er tem 42.2 68.6 27.7 4 90 82 1644 1644 16.2 3.91 90 82	peratur 2 84, 3 137, ' 55, 3,9 90 82 * */1594x77 * ater side 120 * 33.2 * 35 90 82 * 1644 * 159	e 60/7 5 4 2 1 5 2 9 3 0 1 2 72 e 72 e 72 6 7 1 6 7 1 7 3 0 1 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 7 1 6 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7	0°C 0.9 67 7.4 .93 87 79 2.6 6.7 .75 87	40.9 67 27.4 3.93 88 80 62.6 16.7 3.75 88	54.9 89.1 36 4 89 81 2374 82.4 21.1 3.91 89 81	54.9 89.1 36 4 90 82 4×1854×87 82.4 21 3.92 90	68 111 45.4 3.95 91 83 77 102 26.5 3.85 91 83	84.5 137.2 55.5 4 92 84 126.8 32.4 3.91 92	84.5 137.2 55.5 4 93 85 126.8 32.4 3.91 93
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD] Cooling capacity Total absorbed power EER Sound power Sound power [Low noise]	kW kW dB(A) dB(A) mm kW kW kW dB(A) dB(A)	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772 78.9 21.7 3.63 86 80 1644 ×1594	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854 ×877 43.2 10.5 4.1 80 74 3130 ×1854	User 44.6 18 4 87 81 User 4 10.5 3.91 87 81 2374 ×1854 ×877 10.5	nperatu 61.4 100.1 40.7 3.97 87 81 1644×1 1644×1 87 24.8 3.51 87 81 1644 ×1594 ×772	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 ues 12/7 51 13.2 3.85 88 82 2374 ×1854 ×877	C, Recov 68 111.1 45.4 3.95 88 82 ********************************	state state 32 53.4 52.5 3.8 84 78 2374 x1854 x1854 x877	er tem 42.2 68.6 27.7 4 90 82 1644 1644 16.2 3.91 90 82 2374 ×185 ×877	peratur 2 84, 3 137, 7 55, 3.9 90 82 33,9 ater side 120 2 33,1 3.5 90 90 82 4 164 4 x159	e 60/7 5 5 4 2 2 1 5 2 9 3 3 7 2 7 7 2 7 2 7 2 7 2 7 2 7 1 7 1 7 1 7 3 3 1 8 2 4 4 4 4 4 4 4 4 2 2	0°C 0.9 67 7.4 .93 87 79 2.6 6.7 .75 87	40.9 67 27.4 3.93 88 80 62.6 16.7 3.75 88	54.9 89.1 36 4 89 81 2374 82.4 21.1 3.91 89 81	54.9 89.1 36 4 90 82 4×1854×87 82.4 21 3.92 90 82	68 111 45.4 3.95 91 83 77 102 26.5 3.85 91 83	84.5 137.2 55.5 4 92 84 126.8 32.4 3.91 92	84.5 137.2 55.5 4 93 85 126.8 32.4 3.91 93
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD] Cooling capacity Total absorbed power EER Sound power Sound power [Low noise]	kW kW dB(A) dB(A) mm kW kW kW dB(A) dB(A)	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772 78.9 21.7 3.63 86 80 1644 ×1594	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854 ×877 43.2 10.5 4.1 80 74 3130 ×1854	User 44.6 18 4 87 81 User 4 10.5 3.91 87 81 2374 ×1854 ×877 10.5	nperatu 61.4 100.1 40.7 3.97 87 81 1644×1 1644×1 87 24.8 3.51 87 81 1644 ×1594 ×772	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 ues 12/7 51 13.2 3.85 88 82 2374 ×1854 ×877	C, Recov 68 111.1 45.4 3.95 88 82 ********************************	state state 32 53.4 25.5 3.8 84 78 2374 x1854 x1854 x877 45°C sol 52.8 13.3 3.98 84 78 3130 x1854 x877 x877	er tem 42.2 68.6 27.7 4 90 82 1644 1644 16.2 3.91 90 82 2374 ×185 ×877	peratur 2 84. 3 137. 55. 3.9 90 82 xx1594x77 3.9 eter side 120 ± 33.3 ± 33.5 90 82 ± 4.164 ± 13.5 90 82 ± 164 ± 164 ± 164 ± 164 ± 164 ± 152 7 x77 ater side 100	e 60/7 5 4 2 1 5 2 9 3 2 72 e e e 2 72 e 2 72 4 4 4 4 4 4 4 4 4 4 4 4 4	0°C 0.9 67 7.4 .93 87 79 2.6 6.7 .75 87	40.9 67 27.4 3.93 88 80 62.6 16.7 3.75 88	54.9 89.1 36 4 89 81 2374 82.4 21.1 3.91 89 81	54.9 89.1 36 4 90 82 4×1854×87 82.4 21 3.92 90 82	68 111 45.4 3.95 91 83 77 102 26.5 3.85 91 83	84.5 137.2 55.5 4 92 84 126.8 32.4 3.91 92	84.5 137.2 55.5 4 93 85 126.8 32.4 3.91 93
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD] Cooling capacity Total absorbed power EER Sound power Sound power [Low noise] Dimensions [LxHxD]	kW kW dB(A) dB(A) mm kW kW kW dB(A) dB(A) mm	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772 78.9 21.7 3.63 86 80 1644 ×1594 ×772	Utility w 26.2 43.2 17.9 3.89 80 74 2374 x1854 ×877 43.2 10.5 4.1 80 74 3130 x1854 ×877	User 44.6 18 4 87 81 User 4 10.5 3.91 87 81 2374 ×1854 ×877 User	nperatu 61.4 100.1 40.7 3.97 87 81 1644×1 ater val 87 81 1644 ×1594 ×772 ater val	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 ues 12/7 51 13.2 3.85 88 82 2374 ×1854 ×877 ues 60/7	C, Recov 68 111.1 45.4 3.95 88 82 1°C, 40// 99.3 27.1 3.66 88 82 1644 ×1594 ×772 70°C, 15/	Second state Second state 32 53.4 23.5 3.8 84 78 2374 x1854 x1854 x877 45°C south 52.8 13.3 3.98 84 78 3130 x1854 x877 10°C south	er tem 42.2.2 68.8.4 27.7.7 4 90 82 1644 63.4.4 16.2 3.91 3.91 82 2374/ x185 x877 x877	peratur 2 84. 3 137. 5 5.5. 3.9 90 82 82 ×1594×77 84 ater sidd 120 2 33. 3.5 90 82 33. 4 120 2 33.7 90 82 4 164 4 ×155 7 ×77 ater sidd 149.	e 60/7 5 4 2 1 5 2 9 3 2 7 7 2 7 7 7 1 6 7 1 6 7 1 6 7 1 6 2 9 3 3 1 2 1 1 6 2 2 9 3 3 1 1 6 2 2 9 3 3 1 1 6 2 2 9 3 3 1 1 6 1 1 6 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	0°C 0.9 67 7.4 .93 87 79 2.6 6.7 .75 87 79	40.9 67 27.4 3.93 88 80 62.6 16.7 3.75 88 80	54.9 89.1 36 4 89 81 2374 82.4 21.1 3.91 89 81 3130	54.9 89.1 36 4 90 82 4×1854×87 82.4 21 3.92 90 82 90 82	68 111 45.4 3.95 91 83 77 102 26.5 3.85 91 83 77	84.5 137.2 55.5 4 92 84 126.8 32.4 3.91 92 84	84.5 137.2 55.5 4 93 85 126.8 32.4 3.91 93 85
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD] Cooling capacity Total absorbed power EER Sound power Sound power Sound power [Low noise] Dimensions [LxHxD]	kW kW dB(A) dB(A) mm kW kW dB(A) dB(A) dB(A) mm	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772 78.9 21.7 3.63 86 80 1644 ×1594 ×772	Utility w 26.2 43.2 17.9 3.89 80 74 2374 ×1854 ×877 43.2 10.5 4.1 80 74 3130 ×1854 ×877 48.3	User 44 87 81 4 87 81 4 97 81 4 87 81 4 93 94 81 2374 2374 ×1854 ×877 User w 49 49	nperatu 61.4 100.1 40.7 3.97 87 81 1644×1 ater val 87 24.8 3.51 87 81 1644×1 1644×1 24.8 3.51 87 81 164 ×172 ater val 109.2	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 ues 12/7 51 13.2 3.85 88 82 2374 ×1854 ×877 ues 60/7 61	C, Recov 68 111.1 45.4 3.95 88 82 ⁰ ℃, 40// 99.3 27.1 3.66 88 82 1644 ×1594 ×772 70°℃, 15/ 122	Server Wat 32 53.4 22.5 3.8 84 78 2374 ×1854 ×1854 ×877 45°C solt 52.8 13.3 3.98 84 78 710°C solt 59.7	er tem 42.2.2 77.7 4 90 82 1644 1644 162 3.91 90 82 2377 x185 x877 x8	peratur 2 84. 3 137. 55. 3.9 90 82 xx1594x77 ater side 4 120 3.5 90 82 3.5 90 82 4 164 ×156 7 2 3.5 90 82 7 3.5 90 82 3.5 90 82 3.5 90 82 7 82 6 149 5 55.	e 60/7 5 4 2 1 5 2 9 3 1 6 72 72 72 72 72 72 73 1 1 6 7 1 7 3 1 1 2 - 44 44 12 - 9 - 2 - 2 2	0°C 0.9 67 7.4 .93 87 79 2.6 6.6.7 .75 87 79	40.9 67 27.4 3.93 88 80 62.6 16.7 3.75 88 80 74	54.9 89.1 36 4 89 81 237 ⁴ 82.4 21.1 3.91 89 81 313(97.9	54.9 89.1 36 4 90 82 4×1854×87 82.4 21 3.92 90 82 90 82 90 82 90,82 97.9	68 111 45.4 3.95 91 83 77 102 26.5 3.85 91 83 91 83 77	84.5 137.2 55.5 4 92 84 126.8 32.4 3.91 92 84 84	84.5 137.2 55.5 4 93 85 126.8 32.4 3.91 93 85 85
Cooling capacity Thermal power Total absorbed power TER Sound power Sound power [Low noise] Dimensions [LxHxD] Cooling capacity Total absorbed power EER Sound power Sound power [Low noise] Dimensions [LxHxD]	kW kW dB(A) dB(A) mm kW kW dB(A) dB(A) dB(A) mm	54.9 89.1 36.1 3.99 86 80 1644 ×1594 ×772 78.9 21.7 3.63 86 80 1644 ×1594 ×172 97.9 35.8	Utility w 26.2 43.2 17.9 80 74 2374 ×1854 ×877 43.2 10.5 4.1 80 74 3130 ×1854 ×877 48.3 17.9	User 49 08 0 08 0 08 0 08 0 08 0 08 0 08 0 08 0 09 0 01 0 01 0 02 0 03 0 03 0 03 0 03 0 03 0 03 0 04 0 05 0 05 0 05 0 05 0 05 0 05 0 05 0 05 0 05 0 05 0 05 0 05 0 05 0 06 0 07 0 <tr td=""></tr>	nperatu 61.4 100.1 40.7 3.97 87 81 1644×1 1644×1 87 87 81 1644 ×1594 ×1594 ×772 ater val 109.2 40.6	re 12/7° 34 55.5 22.7 3.95 88 82 1594×772 ues 12/7 51 13.2 3.85 88 82 2374 ×1854 ×877 ues 60/7 61 22.5	C, Recov 68 111.1 45.4 3.95 88 82 °C, 40// 99.3 27.1 3.66 88 82 1644 ×1594 ×772 70°C, 15/ 122 45	Second System 32 53.4 22.5 3.8 84 78 2374 ×1854 ×877 52.8 3.398 84 78 3130 ×1854 ×877 10°C soo 59.7 22.5	er tem 42.2.2 77.7 4 90 82 16444 17CE W2 16444 16.2 3.911 90 82 23747 185 ×877 ×185 ×877 	peratur 2 84. 3 137. 55. 3.99 90 82 xx1594x77 ater side ater side 4 120: 3.5 90 82 4 1644 x1597 7 x77 ater side 5 149. 5 55. 2 2.7:	e 60/7 5 4 2 1 5 2 9 3 1 6 72 2 72 2 72 2 9 3 1 6 1 1 2 2 2 2 2 2 2 2	0°C 0.9 67 7.4 .93 87 79 2.6 6.7 .75 87 79 79	40.9 67 27.4 3.93 88 80 62.6 16.7 3.75 88 80 74 27.4	54.9 89.1 36 4 89 81 237 ⁴ 82.4 21.1 3.91 89 81 3130 97.9 35.8	54.9 89.1 36 4 90 82 4×1854×87 82.4 21 3.92 90 82 90 82 90 82 90 82 90 82 90 82	68 111 45.4 3.95 91 83 77 102 26.5 3.85 91 83 91 83 77	84.5 137.2 55.5 4 92 84 126.8 32.4 3.91 92 84 92 84	84.5 137.2 55.5 4 93 85 126.8 32.4 3.91 93 85 150.7 55

Also available with 60 Hz power supply | Hot user IN water temperature 40°C | Hot user OUT water temperature 45°C | Cold user IN water temperature 16°C | Cold user OUT water temperature 10°C

SERVICES

MSW

INDUSTRIAL

0

MULTIPURPOSE WATER-CONDENSED HEAT PUMPS WITH SCROLL COMPRESSORS

42.3-549.2 kW

MULTI-PROTOCOL COMMUNICATION INTERFACE

A2L READY

MSW units are multi-purpose water-cooled heat pumps with Scroll compressors, designed for both tertiary and industrial uses. They guarantee extensive configurability, in terms of both accessories and refrigeration circuit. All sizes of the MSW series can be coupled to both 2 and 4-pipe systems. In the former case production is guaranteed on the hot or cold water primary system side with simultaneous production of hot water on the total recovery side; in the latter case the simultaneous production of hot and cold water is guaranteed for heating and cooling. The numerous cooling configurations available, which offer single-circuit and two-circuit solutions with compressors in a tandem arrangement, ensure maximum efficiency even at partial loads and optimised redundancy. The MSW range is thus designed to meet any requirement efficiently.

Operation modes with 2-pipe system: cooling mode, heating mode, domestic water mode and cooling + domestic water.

Operation modes with 4-pipe system:

cooling mode, heating mode and cooling + heating.

More space in the heating unit

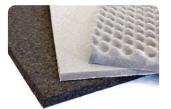
The possibility of installing the pumping units directly on the machine **avoids having to install external hydronic modules** with the resulting coupling costs. This, together with the adoption of compact plate heat exchangers directly facing the right side panel of the unit, guarantees **maximised unit compactness** to make the most of the available space in the thermal power plant.

• Refrigerant R410A

- Electronically controlled expansion valve supplied as standard
- Optional Vic-Taulic hydraulic couplings
- Available versions: multipurpose for 2-pipe system (M) and multi-purpose for 4-pipe system (P)

CATALOGUE CHILLERS AND HEAT PUMPS

Maximum efficiency at partial loads


Meticulous selection of components allows **high efficiency to be obtained at partial loads** thanks to the use of Scroll compressors and the use of electronically controlled electric expansion valves (one per circuit), **optimised to track refrigerant load trends in all conditions of use.** The plate heat exchanger also ensures low water/refrigerant approaches during operation, **all to the advantage of heat exchange efficiency.**

Excellent configurability of the refrigeration section

One of the main strengths of the MSW range is the excellent configurability of the refrigeration circuit structure, which depending on the required size and special requirements can consist of:

a dual compressor (tandem) on a single circuit for greater efficiency at partial loads;
four compressors (dual tandem) on dual circuit, for a redundant system that is also efficient with low loads.

Attention to detail and low noise operation

The Scroll compressors, which are the main source of noise from the machine, can be mounted on a rubber support that **dampens vibrations**, wrapped in special insulating sheaths and placed in a dedicated compartment lined with sound-absorbing material. The machine noise emission and vibrations are thus **considerably reduced at all operating points.**

Integrated hydronic module

On request, and up to a cooling capacity of 180 kW, a version with integrated **hydronic module is available**, which includes circulation pumps on the user side and/or on the source side.

125.2 160.5 37.8 7.55	128.2 164.7	
160.5 37.8		
160.5 37.8		137
		175.4
	39.1	41.2
7.00	7.5	7.58
125.2	128.2	137
37.8	39.1	41.2
3.31	3.28	3.33
5.46	5.77	5.55
3 174.3	179.4	190.
38.3	39.6	41.8
4.56	4.54	4.56
4.75	4.91	4.81
85	82	85
81	78	81
	2374	1644
+x772	×1854	x159
	x877	x772
P 344P	374P	424
	350.3	399.2
1 1001	447.7	
5 400.1	1.1	506.
93 93	104.5	
		114.9
93	104.5	114.9
93	104.5	114.9 7.88
93 7.67	104.5 7.63	114.9 7.88 399.1
93 7.67 313.4	104.5 7.63 350.3	114.9 7.88 399.1 114.8
93 7.67 313.4 93	104.5 7.63 350.3 104.5	114.9 7.88 399. 114.8 3.48
93 7.67 313.4 93 3.37	104.5 7.63 350.3 104.5 3.35	114.9 7.88 399.1 114.8 3.48
93 7.67 313.4 93 3.37	104.5 7.63 350.3 104.5 3.35	114.9 7.88 399.1 114.8 3.48 5.89
93 7.67 313.4 93 3.37 5.69	104.5 7.63 350.3 104.5 3.35 5.77	506. 114.9 7.88 399.2 114.8 3.48 5.89 549.2 115.9
93 7.67 313.4 93 3.37 5.69 4 433.7	104.5 7.63 350.3 104.5 3.35 5.77 485	114.9 7.88 399.2 114.8 3.48 5.89 549.2
93 7.67 313.4 93 3.37 5.69 4 433.7 94	104.5 7.63 350.3 104.5 3.35 5.77 485 106	114.9 7.88 399.2 114.8 3.48 5.89 549.2 115.9
93 7.67 313.4 93 3.37 5.69 4 433.7 94 4.61 4.94 91	104.5 7.63 350.3 104.5 3.35 5.77 485 106 4.58 4.97 93	114.9 7.88 399.2 114.8 3.48 5.89 549.2 115.9 4.74 5.14
93 7.67 313.4 93 3.37 5.69 4 433.7 94 4.61 4.94	104.5 7.63 350.3 104.5 3.35 5.77 485 106 4.58 4.97	114.9 7.88 399.2 114.8 3.48 5.89 549.2 115.9 4.74 5.14
93 7.67 313.4 93 3.37 5.69 4 433.7 94 4.61 4.94 91	104.5 7.63 350.3 104.5 3.35 5.77 485 106 4.58 4.97 93	114.5 7.88 399.1 114.5 3.48 5.89 549.1 115.5 4.74 5.14 89
	37.8 3.31 5.46 3 174.3 38.3 4.56 4.75 85 81 4x772	37.8 39.1 3.31 3.28 5.46 5.77 3 174.3 179.4 38.3 39.6 4.56 4.54 4.75 4.91 85 82 81 78 2374 ×1854 ×877 344P

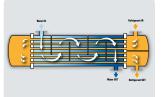
Also available with 60 Hz power supply

www.hiref.it

PSW multi-function units are used to produce hot and cold water, **both independently and simultaneously**, to meet the cooling and heating needs of both industrial and commercial applications. PSW units are ideally suited for **use in 4-pipe systems**. All units are available with two refrigerant circuits and shell and tube exchangers, for a high level of unit reliability. The layout of the components allows **easy access during maintenance** while the hydraulic connections all on the same side allow for **easy installation** and reduced installation space requirements.

RSW

- Electronically controlled expansion valve supplied as standard
- Optional Vic-Taulic hydraulic couplings
- Available in Standard and Low Noise versions
- Programmable electronic control as part of standard equipment
- Smart management of several units in parallel
- Easy access to components for routine maintenance
- Compliance with ERP regulations
- Available in multipurpose version for 4 pipe systems



CATALOGUE CHILLERS AND HEAT PUMPS

Maximum efficiency at partial loads

Accurate selection of the components allows high efficiency to be obtained at partial loads; this is thanks above all to the use of Scroll compressors and to the use of electronically controlled electric expansion valves (one for each circuit), optimised to track refrigerant load trends in all conditions of use. The shell and tube heat exchanger also ensures low water/refrigerant approach temperatures during operation, all to the advantage of heat exchange efficiency.

Reliability: shell and tube

The use of shell and tube exchangers with water flow on the shell side implies **a lower risk of blocking the flow due to exchanger clogging** compared to units with plate heat exchangers. This is ascribable to larger throughsections - the exchanged power being the same. Additionally, the dual-pass heat exchange rensures **high heat exchange efficiency** both in "chiller" and in "heat pump" modes, **with lower consumption figures for the user.**

Reduced footprint

The PSW series has a **compact layout** thanks to the optimised arrangement of the compressors and heat exchangers. **The power density reaches very high values, exceeding 100kW/m².** The lower weight compared to units with screw compressors **facilitates installation and maintenance operations.**

Low noise levels

Thanks to the Scroll compressors used, the PSW units feature lower noise levels than other compressor technologies used for similar applications. Also, thanks to the use of multi-Scroll technology, at partial loads unnecessary compressors are turned off which results in **a** further noise reduction. For extra soundproofing, the Low Noise version is available with soundproofed sheet metal enclosures to compartmentalise the compressors.

PSW		324P	374P	444P	484P	506P	566P	646P	706P
		Cooling: Utili	ity water temper	ature 12/7°C, Re	covery water te	mperature 40/4	5°C		
Cooling capacity	kW	293.7	334	398.6	412	442.4	500.6	579	676.2
Thermal power	kW	370.8	423.9	503.6	521.4	558.1	635.7	730.2	866.6
Total absorbed power	kW	77.1	89.9	105.1	109.4	115.7	135.1	151.2	190.3
TER		8.62	8.43	8.59	8.53	8.65	8.41	8.66	8.11
			User water valu	ies 12/7°C, 30/3	5°C source wate	r side			
Cooling capacity	kW	329.3	374.4	445.6	459.9	498.4	561.4	648.7	692
Total absorbed power	kW	61.9	72.1	84	87.2	92.9	108.3	121.1	130.9
EER		5.32	5.2	5.31	5.27	5.34	5.18	5.36	5.29
			User water valu	ies 12/7°C, 40/4	5°C source wate	er side			
Cooling capacity	kW	329.3	374.4	445.6	459.9	498.4	561.4	648.7	692
Total absorbed power	kW	61.9	72.1	84	87.2	92.9	108.3	121.1	130.9
EER		5.32	5.2	5.31	5.27	5.34	5.18	5.36	5.29
			User water valu	ies 40/45°C, 12/	7°C source wate	er side			
Thermal power	kW	370.8	423.9	503.6	521.4	558.1	635.7	730.2	866.6
Total absorbed power	kW	77.1	89.9	105.1	109.4	115.7	135.1	151.2	190.3
COP		4.81	4.72	4.79	4.77	4.82	4.71	4.83	4.55
Sound power	dB(A)	89	89	90	90	91	91	91	90
Sound power [Low noise]	dB(A)	85	85	86	86	87	87	87	86
Dimensions [LxHxD]	mm				3500X21	00X1800			

RSW		324H	374H	444H	484H	506H	566H	646H	706H
			User water valu	ies 12/7°C, 30/3	5°C source wate	er side			
Cooling capacity	kW	329.3	374.4	445.6	459.9	498.4	561.4	648.7	692
Total absorbed power	kW	61.9	72.1	84	87.2	92.9	108.3	121.1	130.9
EER		5.32	5.2	5.31	5.27	5.34	5.18	5.36	5.29
			User water valu	ies 12/7°C, 40/4	5°C source wate	er side			
Cooling capacity	kW	329.3	374.4	445.6	459.9	498.4	561.4	648.7	692
Total absorbed power	kW	61.9	72.1	84	87.2	92.9	108.3	121.1	130.9
EER		5.32	5.2	5.31	5.27	5.34	5.18	5.36	5.29
			User water valu	ies 40/45°C, 12/	7°C source wate	er side			
Thermal power	kW	370.8	423.9	503.6	521.4	558.1	635.7	730.2	866.6
Total absorbed power	kW	77.1	89.9	105.1	109.4	115.7	135.1	151.2	190.3
COP		4.81	4.72	4.79	4.77	4.82	4.71	4.83	4.55
Sound power	dB(A)	89	89	90	90	91	91	91	90
Sound power [Low noise]	dB(A)	85	85	86	86	87	87	87	86
Dimensions [LxHxD]	mm				3500X21	00X1800			

CHiRef

KSW

SERVICES

WATER/WATER HEAT PUMPS FOR HIGH EVAPORATION AND CONDENSATION TEMPERATURES

HiRef's range of KSW Water/Water heat pumps is designed for all applications where the cold source is at medium temperatures and at the same time, very hot water is required at the condenser - up to 80°C. This particular feature makes KSW units the **ideal solution in the event of medium heat** (up to 45°C) waste heat, which can be used to produce water at higher temperatures in both residential and industrial applications, e.g. district heating systems. All this while **ensuring partial load efficiency, redundancy, compact footprint in utility rooms, low noise levels, auxiliary system management and easy installation**.

Refrigerant R134a

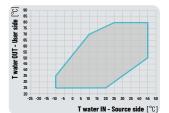
- Electronically controlled expansion valve supplied as standard
- Optional Vic-Taulic hydraulic couplings
- Optional integrated energy meter via Modbus, for metering the energy absorbed by the machine
- External pump control according to constant T or constant ΔT logic

Ideal design for medium temperature heat sources

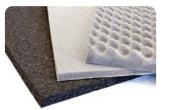
Thanks to the special features of the KSW range, heat sources at temperatures **between 30° and 45°C** (and therefore, unsuitable for direct use) are used by heat pumps **to produce hotter water.** This is true for industrial heat waste, which can be reused to produce, for example, district heating. Similarly, in residential applications, KSW heat pumps can, for example, use in **wintertime fan coil loop water as a heat source** to produce water to feed to high temperature terminals, produce hot water or run anti-legionella cycles.

More space in the heating unit

The adoption of compact plate heat exchangers facing the unit right side panel **maximise the use of the available internal space thanks to reduced unit footprint.**


CHiRef

CATALOGUE CHILLERS AND HEAT PUMPS


Maximum efficiency at partial loads

The KSW range adopts a multi-Scroll solution also on single circuits, electronically controlled expansion valves, plate heat exchangers and the option to control the (external) circulation pumps **via dedicated software:** all these characteristics allow **high energy efficiency to be achieved at partial loads.**

Optimised units for high temperature water production (80°C)

The KSW range units can produce water **up to 80°C** even when associated with a source of medium-temperature water (up to 45°C). This is thanks to **an accurate sizing of the heat exchangers and to the use of Scroll compressors** specially developed for high evaporation and condensation temperatures.

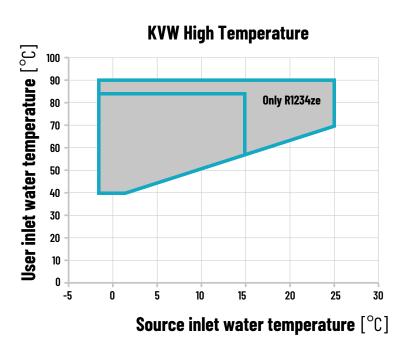
Attention to detail and low noise operation

Scroll compressors, which are the main noise source in the unit, are fitted on rubber feet; **these dampen vibration and therefore attenuate the noise transmitted to the various system parts.** On request, the compressor compartment can be lined with special sound absorbing material and the compressors encased in special insulating hoods **to reduce airborne noise emissions.**

Efficiency and reliability in line with system requirements

The available refrigerating circuit configurations have been designed to ensure, also simultaneously, **redundancy and efficiency at partial loads.** More specifically, the units - depending on the size of the machine and on specific plant engineering requirements - consist of two compressors on two circuits **for high system redundancy** or four compressors (double tandem) on two circuits for a system that is **simultaneously redundant and efficient at partial loads.**

KSW		040K	050K	060K	081K	082K	091K	092K	101K	102K	121K	122K	151K	152K	171K	172K	174K	201K
				User w	ater val	ues 70/	80°C, 4	5/40°C	source	water s	ide							
Thermal power	kW	38	49.5	61.1	75.6	75.8	83.9	84.1	97.1	97.3	121.3	121.5	148.8	149.3	171	171.3	166.4	191.2
Total absorbed power	kW	8.5	11.2	14.1	16.9	16.9	19	19	22.4	22.3	27.9	27.8	35	35	40.2	40.1	38.3	45.2
COP		4.45	4.41	4.33	4.47	4.49	4.41	4.44	4.34	4.35	4.35	4.37	4.25	4.26	4.26	4.27	4.35	4.23
SCOP		4.18	4.2	4.17	4.91	4.92	4.89	4.94	4.84	4.95	4.86	4.87	4.52	4.59	4.62	4.65	5.15	4.67
Sound power	dB(A)	74	74	78	77	77	77	77	77	77	81	81	84	84	85	85	80	86
Sound power [Low noise]	dB(A)	70	70	74	73	73	73	73	73	73	77	77	80	80	79	79	74	80
Dimensions [LxHxD]	mm	804	4x1462×6	07					1174x1	594x772					1644×1	594x772	2374 ×1854 ×877	1644 x1594 x772
KSW		202K	204K	221K	222	(241)	(242	K 244	+K 30	1K 30	02K 3)4K 3	44K 4	404K	444K	484K	554K	604K
				User wa	ater val	ues 70/	80°C, 4	5/40°C	source	water s	ide							
Thermal power	kW	191.3	192	211.4	211.8	240.9	241.	7 239	.5 29	1.5 29	32.3 2	96.1 3	39.5	380.5	431.7	474.7	537.1	589.7
Total absorbed power	kW	45.2	45.1	51.4	51.3	56.5	56.4	4 56.	3 69	9.9 6	9.9 7	0.4	30.6	91.2	102.3	114.5	126.3	139.8
COP		4.24	4.25	4.12	4.13	4.26	4.2	8 4.2	6 4	.17 4			4.21	4.17	4.22	4.14	4.25	4.22
SCOP		4.84	5.14	4.68	4.84	4.72	4.8	2 5.0	5 4.	65 4	.85 4	i.74 i	4.84	4.98	5	4.93	4.98	5.01
Sound power	dB(A)	86	80	87	87	88	88	84	+ 9	0	90	87	88	89	90	91	92	93
Sound power [Low noise]	dB(A)	80	74	81	81	82	82	78	8 8	2	82	79	80	81	82	83	84	85
Dimensions [LxHxD]	mm	1644 ×1594 ×772	2374 ×1854 ×877		1644)	(1594x77)	2	237 x185 x87	54 16	44x1594x	772			2374	x1854x8	77		


Also available with 60 Hz power supply

CHiRef

INDUSTRIAL

KVW is HiRef's range of water-condensed high-temperature heat pumps with **two-stage screw compressors**, **spray flooded shell and tube evaporator** and **shell and tube condenser**. The units are available with traditional refrigerant R134a or R1234ze, with a **very low GWP** (Global Warming Potential) value. The range covers the thermal power range from 400 to 2000kW* and reaches COP values of 2.2 producing water at +90°C (with R1234ze) from a source at -2°C. The KVW **extra high temperature heat pump series is ideally suitable for low-medium temperature heat recovery to produce hot water for district heating networks or industrial processes**.

• Refrigerant R1234ze and R515B

- Available in version: heating only heat pumps for high temperatures and chiller with total high temperature recovery.
- Monitoring and limitation of the maximum absorbed power
- Available with screw compressors driven by inverters
- Thermal insulation hoods on the compressors for the high temperature heat pump versions (optional)
- Modulation and supervision managed by the software
- Available in a single-circuit version with a single compressor and a dual-circuit version with two compressors
- External inverter for compressor modulation from 50% to 100%

CHiRef

CATALOGUE CHILLERS AND HEAT PUMPS

Power and flexibility

Screw compressor allows achievement of **high cooling capacities** with load modulation via the special slide valve, **with obvious advantages in terms of energy efficiency.**

Production of hot water up to 90°C

The units of the KVW range **can produce water at a temperature of 90°C even from a very cold source.** Thanks to this feature, the heat pumps can be integrated into the **district heating circuits** even in replacement of traditional heat generators.

Two-level evaporation

The unit is equipped with a flooded evaporator with spray technology and double water-side passage. With this technology, **the refrigerant charge is reduced by 30% compared to a standard flooded bundle**.

Optimised installation space

The unit is available in both standard and 'mirrored' layout versions. When ordered together, the two versions **can be placed adjacent to each other on the long side** in order to occupy **as little space as possible in the heating plant and facilitate maintenance operations.**

Standard touch screen display

The KVW series comes with a **touch screen display and customized software and screens as standard.** On request, total web monitoring can be integrated through an Ethernet card

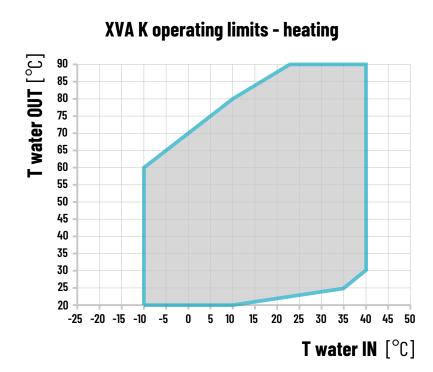
Economiser, power and flexibility

The integration of the refrigeration circuit with the economiser allows **the heat output of the heat pump and also the efficiency (COP) to be increased.**

KVW		500K	1001K	2001K								
User water temperature 65/85°C, Source water temperature 4/1°C 20% ethylene glycol												
Thermal power	kW	535	1104	2208								
Total absorbed power	kW	227.6	460	920								
Sound power	dB(A)	96	99	102								
Dimensions [LxHxD]	mm	3045X2574X1800	5180X2574X1800	5180X2574X3600								

The 2000kW unit includes two 1000kW modules.

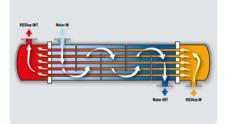
INDUSTRIAL


XVA K

HEATING-ONLY WATER CONDENSED HEAT PUMPS WITH INVERTER DRIVEN SCREW COMPRESSORS

408.2-1679 kW

XVA K is HiRef's range of water-cooled chillers with screw compressors and shell and tube heat exchangers. Use of the new R1234ze refrigerant, **with ultra-low GWP** (Global Warming Potential), and **achievement of high energy efficiency levels**, especially at partial loads, **ensures the system has a low TEWI** (Total Equivalent Warming Impact). The broad capacity range offered and the availability of different versions caters to a wide variety of needs.


- Refrigerant R1234ze and R515B
- Also available with R515B refrigerant on request
- Available versions: heating only heat pump and heating only heat pump for high temperatures
- Electronic expansion valve
- Monitoring and limitation of the maximum absorbed power
- Available with screw compressors driven by inverters
- Thermal insulation hoods on the compressors for the high temperature heat pump versions

CATALOGUE CHILLERS AND HEAT PUMPS

Power and flexibility

Screw compressor allows **high thermal power** to be achieved with load modulation via the special slide valve. On request, a version with inverter either on one or on both compressors is available, **for finer adjustment of cooling capacity and obvious advantages in terms of energy efficiency.**

New concept of heat exchange

Single pass shell and tube evaporators provide **excellent levels of thermodynamic efficiency** thanks to full heat exchange counter-flow.

Low Noise set-up

The screw compressors, the only source of noise on the machine, can be placed in a dedicated enclosure lined with sound-absorbing material **that reduces the overall noise emission.**

XVA K		039YK	043IK	044YK	049IK	051YK	057IK	060YK	060IK	066YK	066IK	075YK	075IK	086YK	086IK	106YK	117IK	126YK	138IK	147YK	147IK	172YK	172IK
		H	eating	: User	wate	r temp	eratu	re 80/	'90°C,	Sourc	e wat	er ten	operat	ure 4	5/40°	C							
Thermal power	kW	408.2	425.5	456	475.1	528.8	551.3	592.7	592.7	649.9	649.9	735.4	735.4	848	848	1080	1125.6	1284.4	1339.2	1442.5	1442.5	1679	1679
Total absorbed power	kW	135.9	142.8	151.0	160.5	176.3	186.9	191.8	193.7	217.4	219.6	248.1	250.6	284.1	286.5	349.5	370.3	401.4	425.1	442.5	446.6	496.7	501.2
COP		3.04	5.10	3.02	2.96	3.00	2.95	3.09	3.06	2.99	2.96	2.96	2.93	2.98	2.96	3.09	3.04	3.20	3.15	3.26	3.23	3.38	3.35
SCOP		4.94	5.10	5.04	5.12	4.99	5.15	5.10	5.21	5.11	5.22	5.09	5.20	5.17	5.26	5.06	5.21	5.16	5.31	5.22	5.36	5.35	5.47
Sound power	dB(A)	91	92	91	92	91	92	91	91	95	95	95	95	96	96	96	97	97	98	97	97	98	98
Dimensions [LxHxD]	mm	39	937 x 15	07 x 200	00	47	'00 x 15	07 x 200	00		47	700 x 16	50 x 220	00			5	198 x 18	17 x 245	0		X]8	288 817 450

DATA CENTER VINDUSTRIAL

SERVICES

PLM

POLYMORPH HYDRONIC MODULES FOR WATER/WATER CHILLERS SYSTEMS

HiRef Polymorph modules provide a **solution that "converts" a water-condensed chiller into a more advanced system**. The water management system is the "master" element of the heating system. Thanks to **a hydronic circuit specially designed for the application, and built-in software to control the different operating modes**, any water-to-water chiller (even of a different brand) can also be used as: a reversible heat pump, a chiller with total recovery, a multipurpose heat pump for 2-pipe systems, a multipurpose heat pump for 4-pipe systems or an air conditioning system with Free-Cooling.

Reversible heat pump

The Polymorph PLM-H module allows **a reversible heat pump to be obtained** for the production of chilled water or hot water when connected to a chilling-only water-water chiller.

Chiller with total recovery

The Polymorph PLM-R module, in combination with a water-water chiller, **recovers 100% of the condensation heat** avoiding dissipation to the outside heat source and making heat available for different purposes.

- The PLM module, unlike traditional pumping modules, acts as the "master" unit managing the system, which can be made up of one or more chillers in parallel
- Built-in software for managing the different modes and interfacing with the chiller
- Compatibility with any chiller, even if already present in the system
- Vic-Taulic type quick water couplings
- Suitable for any chiller size
- Also available in Low-Noise silenced set-up with internal compartment lined with sound-absorbing material
- Standard high efficiency pumps

CATALOGUE CHILLERS AND HEAT PUMPS

2T multi-purpose heat pump

The Polymorph PLM-M module is able to turn a water-condensed chilling-only chiller into **a multipurpose heat pump (with total condensation heat recovery)** suitable for installation in a "two-pipe" system. Its possible functions are:

- production of chilled water only;
- hot water production only set-point #1(e.g. heating);
- hot water production only set-point #2(e.g. DHW);
- production of chilled water and hot water at the same time set-point #2.

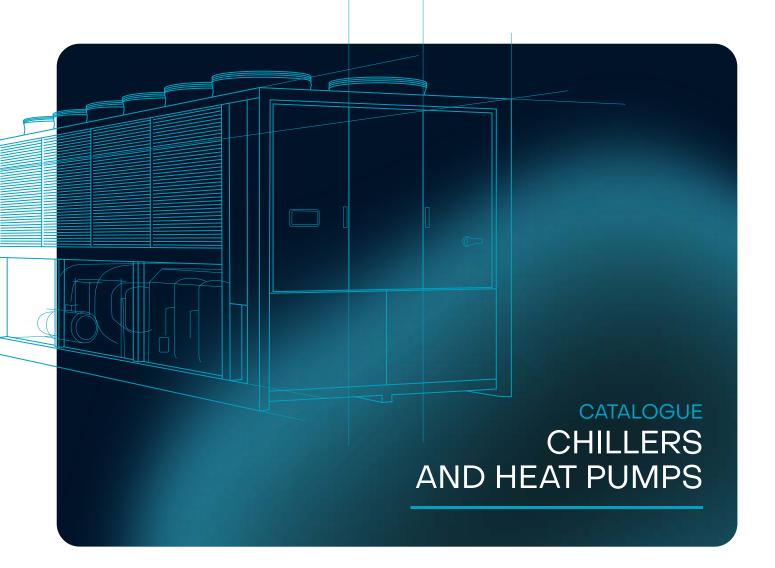
4T multi-purpose heat pump

The Polymorph PLM-P module is suitable for **all so-called "four-pipe" systems** where hot and cold water must be produced at the same time. The water/water chiller combined with the PLM-P allows the following functions:

- production of chilled water only;
- production of hot water only;
- production of chilled water and hot water at the same time.

Free-Cooling system

A Dry Cooler water-condensed water chiller can be combined with a Polymorph PLM-F module to convert the system **into a Free-Cooling system.** Outdoor air, if sufficiently cold, is used as a source of cooling capacity **allowing considerable savings of electricity.** Below the TFT (Total Free-Cooling Temperature) the compressors are switched off and the cooling demand is completely **covered with the only consumption being from auxiliaries** (fans and circulators).



PLM	FRAME 1	FRAME 2	FRAME 3	FRAME 4			
Dimensions [LxHxD]	mm	1174x1590x772	1644x1590x772	2374x1850x877	3130x1850x877		
Also available with 60 Hz power supplyD							

INNOVATORS above the standards

HiRef S.p.A. Viale Spagna, 31/33 - 35020 Tribano (PD) Italy Tel. +39 049 9588511 - Fax +39 049 9588522 - info@hiref.it

HiRef S.p.A. reserves the right, at any time, to introduce any necessary changes and improvements to its products without prior notice. Reproduction, even partial, of this catalogue is forbidden without a written permission from HiRef S.p.A. © Copyright HiRef S.p.A. 2024

HF65001072 Rev.E